Math 3140 — Fall 2012 Exam #2

Work alone. No materials except pen (or pencil) and paper allowed. Write your solutions on a separate paper. Justify your answers. Giving incorrect or irrelevant justification will be penalized.

Problem 1. Suppose that A, B, and C are groups with their group operations all written multiplicatively. Suppose that $\varphi: A \to B$ and $\psi: B \to C$ are homomorphisms of groups. Let $\omega = \psi \circ \varphi$. Show that the function $\omega: A \to C$ is a homomorphism of groups.

Problem 2. Describe a group with 4 elements that is **not** isomorphic to $\mathbb{Z}/4\mathbb{Z}$. Make sure to explain how you know this group is not isomorphic to $\mathbb{Z}/4\mathbb{Z}$.

Problem 3. Let $\mathbf{R} \times \mathbf{R}$ be the group of pairs (a,b) where a and b are real numbers with group operation

$$(a,b) + (a',b') = (a+a',b+b').$$

Let $\varphi : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be the function

$$\varphi(a,b) = a + b.$$

Show that φ is a homomorphism.

Problem 4. Let $A = \langle 210, 360, 756 \rangle$ be the subgroup of **Z** containing $210 = 2 \cdot 3 \cdot 5 \cdot 7$ and $360 = 2^3 \cdot 3^2 \cdot 5$ and $756 = 2^2 \cdot 3^3 \cdot 7$. Recall that this means A consists of all integers of the form 210x + 360y + 756z with $x, y, z \in \mathbf{Z}$. List all numbers between 0 and 100 (inclusive) that are not in $\langle 210, 360 \rangle$, nor in $\langle 210, 756 \rangle$, nor in $\langle 360, 756 \rangle$. Remember to justify your answer.

Problem 5. Prove that every odd permutation in S_n has even order. (Recall that an odd permutation is one whose sign is -1.)

Problem 6. Let $X = \{1, 2, 3, 4, 5\}$ and let Y be the set of subsets of X.

(a) How many elements does Y have?

For each $\sigma \in S_5$, let $T_{\sigma}: Y \to Y$ be the function defined by $T_{\sigma}(A) = {\sigma(x) \mid x \in A}$.

- (b) Compute $T_{(15)(234)}(\{1,3,4\})$.
- (c) Compute $T_{(23)}(\{1,5\})$.
- (d) List the elements of the stabilizer of $\{1, 2, 3\}$. Recall that the stabilizer of an element $y \in Y$ is the set of all $\sigma \in S_5$ such that $T_{\sigma}(y) = y$.
- (e) How many elements will there be in the orbit of $\{1, 2, 3\}$ under the action of S_5 on Y?
- (f) (Extra credit) Prove that the stabilizer subgroup of $\{1, 2, 3\}$ is isomorphic to $S_3 \times S_2$. You may use the fact that $\varphi(\sigma) = T_{\sigma}$ is a homomorphism from S_5 into S_Y without proving it.

Definition 1. A group is a set G with an operation $*: G \times G \to G$ such that (i) a*(b*c) = (a*b)*c for all $a,b,c \in G$, (ii) there is an $e \in G$ such that e*a = a = a*e for all $a \in G$, and (iii) for any $a \in G$ there is an $a^{-1} \in G$ such that $aa^{-1} = e = a^{-1}a$. The group G is said to be **abelian** if a*b = b*a for all $a,b \in G$.

A subset $H \subset G$ is called a **subgroup** if (i) for all $a, b \in H$ the element a * b is in H, and (ii) H is a group with operation *.

A group is called **cyclic** if it is isomorphic **Z** or it is isomorphic to $\mathbf{Z}/n\mathbf{Z}$ for some integer n.

The **order** of an element g of a group G (written multiplicatively with identity element 1) is the smallest positive integer n such that $g^n = 1$.

Definition 2. Suppose that G and H are groups with operations written multiplicatively. A **homomorphism** $\varphi: G \to H$ is a function $\varphi: G \to H$ such that $\varphi(xy) = \varphi(x)\varphi(y)$. A homomorphism is called an **isomorphism** if it is also a bijection.

The **kernel** of φ is the set $\ker(\varphi) = \{x \in G \mid \varphi(x) = 1\}$ where 1 is the identity in H.

The **image** of φ is the set $\operatorname{im}(\varphi) = \{ y \in H \mid \exists x \in G, y = \varphi(x) \}.$

Definition 3. An action of a group G on a set X is a homomorphism $\varphi: G \to S_X$. Use the notation $T_g = \varphi(g)$. The stabilizer of an element $x \in X$ is $\{g \in G \mid T_g(x) = x\}$. The orbit of $x \in X$ is $\{g \in G \mid T_g(x) = y\}$.

Notation

 ${f Z}$ is the set of integers and ${f R}$ is the set of real numbers.

 D_n is the set of rigid symmetries of a regular n-gon.

 $\mathbf{Z}/n\mathbf{Z}$ is the set of equivalence classes of integers modulo n.

 $\gcd\{a_1,\ldots,a_n\}$ denotes the greatest common divisor of integers a_1,\ldots,a_n .

If X is a set, S_X is the set of bijections from X to itself. If $X = \{1, 2, ..., n\}$ then S_X is also written S_n .

If $\sigma \in S_n$ the sign of σ is the expression $\operatorname{sgn}(\sigma) = \prod_{1 \le i < j \le n} \frac{x_{\sigma(i)} - x_{\sigma(j)}}{x_i - x_j}$. An element of S_n is called a **transposition**

if it exchanges two numbers and leaves all others unchanged. An element of S_n is called **even** if its sign is 1 and **odd** if its sign is -1. The set of even elements of S_n is denoted A_n .

Theorems

Proposition 1. The following are abelian groups: (i) \mathbf{Z} under addition, (ii) $\mathbf{Z}/n\mathbf{Z}$ under addition, (iii) \mathbf{R} under addition, (iv) \mathbf{R}^* under multiplication, (v) \mathbf{C}^* under multiplication, (vi) S_X if X is a set with 2 or fewer elements. The following are non-abelian groups: (vii) D_n , (viii) S_X if X is a set with 3 or more elements.

Theorem 2 (Cayley's theorem). Every group is isomorphic to a subgroup of the group of symmetries of some set.

Proposition 3. Let G be a group. A subset $H \subset G$ is a subgroup if and only if both (i) $H \neq \emptyset$, and (ii) for all $a, b \in H$ the element ab^{-1} is in H.

Theorem 4. If x and y are integers with greatest common divisor d there are integers a and b such that ax + by = d.

Theorem 5. If G is a cyclic group then every subgroup of G is cyclic.

Proposition 6. Suppose that G and H are groups with operations written multiplicatively and identity elements both called 1. If $\varphi: G \to H$ is a homomorphism of groups then (i) $\varphi(1) = 1$, (ii) $\varphi(x^{-1}) = \varphi(x)^{-1}$ for all $x \in G$, (iii) $\ker(\varphi)$ is a subgroup of G, (iv) $\operatorname{im}(\varphi)$ is a subgroup of H.

Proposition 7. If $\sigma \in S_n$ then $sgn(\sigma) \in \{\pm 1\}$ and the function $sgn : S_n \to \{\pm 1\}$ is a homomorphism. If τ is a transposition then $sgn(\tau) = -1$.

Proposition 8. For complex numbers z and w, we have |zw| = |z| |w|.

Proposition 9. If $\varphi: G \to H$ is an isomorphism of groups then $\varphi^{-1}: H \to G$ is also an isomorphism.

Proposition 10. The inverse of a 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ provided $\frac{1}{ad-bc}$ exists.

Proposition 11. Let g be an element of a group G and suppose $g^n = 1$. Then ord(g) is finite and divides n.

Theorem 12. Let $\varphi: G \to S_X$ be a group action. For $x \in X$, let G_x be the stabilizer of x and let O_x be the orbit of x. If G is finite then $\#G_x \cdot \#O_x = \#G$.