$\begin{array}{l} \text{Math 3140} - \text{Fall 2012} \\ \text{Exam } \#2 \end{array}$

Work alone. No materials except pen (or pencil) and paper allowed. Write your solutions on a separate paper. Justify your answers. Giving incorrect or irrelevant justification will be penalized.

Problem 1. Suppose that A, B, and C are groups with their group operations all written multiplicatively. Suppose that $\varphi : A \to B$ and $\psi : B \to C$ are homomorphisms of groups. Let $\omega = \psi \circ \varphi$. Show that the function $\omega : A \to C$ is a homomorphism of groups.

Solution. We must show that for any $x, y \in A$ we have $\omega(xy) = \omega(x)\omega(y)$. We have

$\omega(xy) = \psi(\varphi(xy))$	definition of ω
$=\psi(\varphi(x)\varphi(y))$	φ is a homomorphism
$=\psi(\varphi(x))\psi(\varphi(y))$	ψ is a homomorphism
$=\omega(x)\omega(y)$	definition of ω .

This holds for any $x, y \in A$ so ω is a homomorphism.

Comments. Since this problem was worth 5 points and most people wrote very good answers, I only gave full credit to answers that were really perfect. You should consider a score of 4/5 quite good on this problem.

Problem 2. Describe a group with 4 elements that is **not** isomorphic to $\mathbf{Z}/4\mathbf{Z}$. Make sure to explain how you know this group is not isomorphic to $\mathbf{Z}/4\mathbf{Z}$.

Solution. Let $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Then for every $(x, y) \in G$ we have (x, y) + (x, y) = (2x, 2y) which is the same as (0, 0) modulo 2. Therefore G does not contain any element of order 4. On the other hand $\mathbb{Z}/4\mathbb{Z}$ does have an element of order 4, so these groups can't be isomorphic.

Problem 3. Let $\mathbf{R} \times \mathbf{R}$ be the group of pairs (a, b) where a and b are real numbers with group operation

$$(a,b) + (a',b') = (a + a', b + b').$$

Let $\varphi : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ be the function

$$\varphi(a,b) = a + b.$$

Show that φ is a homomorphism.

Solution. We have to check that $\varphi((a,b) + (a',b')) = \varphi(a,b) + \varphi(a',b')$. We have

$\varphi((a,b) + (a',b')) = \varphi(a+a',b+b')$	definition of addition in ${\bf R} \times {\bf R}$
=a+a'+b+b'	definition of φ
= a + b + a' + b'	addition in ${\bf R}$ is commutative
$= \varphi(a,b) + \varphi(a',b')$	definition of φ .

Problem 4. Let $A = \langle 210, 360, 756 \rangle$ be the subgroup of **Z** containing $210 = 2 \cdot 3 \cdot 5 \cdot 7$ and $360 = 2^3 \cdot 3^2 \cdot 5$ and $756 = 2^2 \cdot 3^3 \cdot 7$. Recall that this means A consists of all integers of the form 210x + 360y + 756z with $x, y, z \in \mathbf{Z}$. List all numbers between 0 and 100 (inclusive) that are not in $\langle 210, 360 \rangle$, nor in $\langle 210, 756 \rangle$, nor in $\langle 360, 756 \rangle$. Remember to justify your answer.

Solution. First, factor the numbers:

$$210 = 2 \cdot 3 \cdot 5 \cdot 7$$
$$360 = 2^3 \cdot 3^2 \cdot 5$$
$$756 = 2^2 \cdot 3^3 \cdot 7.$$

Therefore

$$gcd \{210, 360\} = 2 \cdot 3 \cdot 5 = 30$$
$$gcd \{210, 756\} = 2 \cdot 3 \cdot 7 = 42$$
$$gcd \{360, 756\} = 2^2 \cdot 3^2 = 36$$
$$gcd \{210, 360, 756\} = 2 \cdot 3 = 6.$$

Now,

$$\langle 210, 360 \rangle = \langle \gcd \{ 210, 360 \} \rangle = \langle 30 \rangle \langle 210, 756 \rangle = \langle \gcd \{ 210, 756 \} \rangle = \langle 42 \rangle \langle 360, 756 \rangle = \langle \gcd \{ 360, 756 \} \rangle = \langle 36 \rangle \langle 210, 360, 756 \rangle = \langle 210, \gcd \{ 360, 756 \} \rangle = \langle 210, 36 \rangle = \langle \gcd \{ 210, 36 \} \rangle = \langle 6 \rangle.$$

Therefore A contains all multiples of 6, and $\langle 210, 360 \rangle$ contains all multiples of 30, and $\langle 210, 756 \rangle$ contains all multiples of 42, and $\langle 360, 756 \rangle$ contains all multiples of 36. Therefore we want to list all numbers between 0 and 100 that are multiples of 6 but are not multiples of 30, 42, or 36. These are:

$$\mathscr{H}, 6, 12, 18, 24, \mathscr{H}, \mathscr{H}, \mathscr{H}, 48, 54, \mathscr{H}, 66, \mathscr{H}, 78, \mathscr{H}, 90, 96.$$

Problem 5. Prove that every odd permutation in S_n has even order. (Recall that an odd permutation is one whose sign is -1.)

Solution. Let m be the order of $\sigma \in S_n$. Then $\sigma^m = e$. Therefore $\operatorname{sgn}(\sigma^m) = \operatorname{sgn}(e)$. But sgn is a homomorphism so $\operatorname{sgn}(\sigma^m) = \operatorname{sgn}(\sigma)^m$ and $\operatorname{sgn}(e) = 1$. Therefore $\operatorname{sgn}(\sigma)^m = 1$.

But σ is an odd permutation so $sgn(\sigma) = -1$. Therefore $(-1)^m = 1$, which means that m must be a multiple of 2.

Problem 6. Let $X = \{1, 2, 3, 4, 5\}$ and let Y be the set of subsets of X.

(a) How many elements does Y have?

Solution. If we want to describe a subset of X we have to decide, for each number $1, \ldots, 5$, whether that number is in the subset. That's a sequence of 5 yes or no questions that can be answered independently for a total of $2^5 = 32$ possibilities.

For each $\sigma \in S_5$, let $T_{\sigma} : Y \to Y$ be the function defined by $T_{\sigma}(A) = \{\sigma(x) \mid x \in A\}$.

(b) Compute $T_{(15)(234)}(\{1,3,4\})$.

Solution.

$$T_{(15)(234)}(\{1,3,4\}) = \{5,4,2\} = \{2,4,5\}.$$

(c) Compute $T_{(23)}(\{1,5\})$.

Solution.

$$T_{(23)}(\{1,5\}) = \{1,5\}$$

- (d) List the elements of the stabilizer of $\{1, 2, 3\}$. Recall that the stabilizer of an element $y \in Y$ is the set of all $\sigma \in S_5$ such that $T_{\sigma}(y) = y$.

Solution. The stabilizer consists of the elements

$$e, (123), (132), (12), (13), (23), (45), (123)(45), (132)(45), (12)(45), (13)(45), (23)(45), ($$

(e) How many elements will there be in the orbit of $\{1, 2, 3\}$ under the action of S_5 on Y?

Solution. Let G be the stabilizer of $\{1, 2, 3\}$ and O be its orbit. Then $\#(G)\#(O) = \#(S_5)$. The size of S_5 is 5! = 120 and we have just seen that #(G) = 12 so #(O) must be 10.

(f) (Extra credit) Prove that the stabilizer subgroup of $\{1, 2, 3\}$ is isomorphic to $S_3 \times S_2$. You may use the fact that $\varphi(\sigma) = T_{\sigma}$ is a homomorphism from S_5 into S_Y without proving it.

Solution. Instead of writing $S_3 \times S_2$, we will write $S_{\{1,2,3\}} \times S_{\{4,5\}}$. Let G be the stabilizer of $\{1,2,3\}$ in S_5 . We construct a homomorphism

$$\psi: S_{\{1,2,3\}} \times S_{\{4,5\}} \to G$$

by the rule $\psi(\sigma, \tau) = \sigma \tau$. First we check that $\psi(\sigma, \tau)$ is actually in G since it is only automatic from the definition that $\psi(\sigma, \tau) \in S_5$. To check this, we have to check that $T_{\psi(\sigma,\tau)}(\{1,2,3\}) = \{1,2,3\}$. Here is the check:

$$\begin{aligned} T_{\psi(\sigma,\tau)}(\{1,2,3\}) &= T_{\sigma\tau}(\{1,2,3\}) & \text{definition of } \psi \\ &= T_{\sigma}T_{\tau}(\{1,2,3\}) & \text{since } \varphi \text{ is a homomorphism} \\ &= T_{\sigma}(\{1,2,3\}) & \text{since } \tau \in S_{\{4,5\}}, \ T_{\tau} \text{ fixed } \{1,2,3\} \\ &= \{1,2,3\} & \text{since } \sigma \in S_{\{1,2,3\}}, \ T_{\sigma} \text{ fixes } \{1,2,3\}. \end{aligned}$$

Now we check that ψ is a homomorphism

$$\begin{split} \psi((\sigma,\tau)(\sigma',\tau')) &= \psi(\sigma\sigma',\tau\tau') & \text{definition of multiplication in } S_{\{1,2,3\}} \times S_{\{4,5\}} \\ &= \sigma\sigma\sigma'\tau\tau' & \text{definition of } \psi \\ &= \sigma\tau\sigma'\tau' & \tau \text{ and } \sigma' \text{ are disjoint so they commute} \\ &= \psi(\sigma,\tau)\psi(\sigma',\tau') & \text{definition of } \psi. \end{split}$$

Note that it was very important in the above argument that σ' and τ permuted disjoint subsets of $\{1, 2, 3, 4, 5\}$. If this weren't true, we couldn't exchange their order!

Now we have to check that ψ is a bijection. Since $S_3 \times S_2$ and G both have 12 elements, it's enough to show that ψ is injective. Suppose that $\psi(\sigma, \tau) = \psi(\sigma', \tau')$. Then for any $x \in \{1, 2, 3, 4, 5\}$ we have $\psi(\sigma, \tau)(x) = \psi(\sigma', \tau')(x)$. Now, either $x \in \{1, 2, 3\}$ or $x \in \{4, 5\}$. In the first case, we get

$$\begin{split} \psi(\sigma,\tau)(x) &= \psi(\sigma',\tau')(x) \\ \sigma\tau(x) &= \sigma'\tau'(x) \\ \sigma(x) &= \sigma'(x) \end{split} \qquad \qquad \text{definition of } \psi \\ \text{since } x \in \left\{1,2,3\right\} \text{ and } \tau,\tau' \in S_{\left\{4,5\right\}}. \end{split}$$

This holds for any $x \in \{1, 2, 3\}$, so $\sigma = \sigma'$. If on the other hand $x \in \{4, 5\}$, we get

$$\begin{split} \psi(\sigma,\tau)(x) &= \psi(\sigma',\tau')(x) \\ \sigma\tau(x) &= \sigma'\tau'(x) \\ \tau(x) &= \tau'(x) \end{split} \qquad \qquad \text{definition of } \psi \\ \text{since } x \in \left\{4,5\right\} \text{ and } \sigma, \sigma' \in S_{\left\{1,2,3\right\}}. \end{split}$$

Definition 1. A group is a set G with an operation $*: G \times G \to G$ such that (i) a * (b * c) = (a * b) * c for all $a, b, c \in G$, (ii) there is an $e \in G$ such that e * a = a = a * e for all $a \in G$, and (iii) for any $a \in G$ there is an $a^{-1} \in G$ such that $aa^{-1} = e = a^{-1}a$. The group G is said to be **abelian** if a * b = b * a for all $a, b \in G$.

A subset $H \subset G$ is called a **subgroup** if (i) for all $a, b \in H$ the element a * b is in H, and (ii) H is a group with operation *.

A group is called **cyclic** if it is isomorphic **Z** or it is isomorphic to $\mathbf{Z}/n\mathbf{Z}$ for some integer *n*.

The order of an element g of a group G (written multiplicatively with identity element 1) is the smallest positive integer n such that $g^n = 1$.

Definition 2. Suppose that G and H are groups with operations written multiplicatively. A homomorphism $\varphi: G \to H$ is a function $\varphi: G \to H$ such that $\varphi(xy) = \varphi(x)\varphi(y)$. A homomorphism is called an **isomorphism** if it is also a bijection.

The **kernel** of φ is the set ker $(\varphi) = \{x \in G \mid \varphi(x) = 1\}$ where 1 is the identity in H.

The **image** of φ is the set $\operatorname{im}(\varphi) = \{y \in H \mid \exists x \in G, y = \varphi(x)\}.$

Definition 3. An action of a group G on a set X is a homomorphism $\varphi : G \to S_X$. Use the notation $T_g = \varphi(g)$. The stabilizer of an element $x \in X$ is $\{g \in G \mid T_g(x) = x\}$. The orbit of $x \in X$ is $\{y \in X \mid \exists g \in G, T_g(x) = y\}$.

Notation

 \mathbf{Z} is the set of integers and \mathbf{R} is the set of real numbers.

 D_n is the set of rigid symmetries of a regular *n*-gon.

 $\mathbf{Z}/n\mathbf{Z}$ is the set of equivalence classes of integers modulo *n*.

 $gcd \{a_1, \ldots, a_n\}$ denotes the greatest common divisor of integers a_1, \ldots, a_n .

If X is a set, S_X is the set of bijections from X to itself. If $X = \{1, 2, ..., n\}$ then S_X is also written S_n .

If $\sigma \in S_n$ the sign of σ is the expression $\operatorname{sgn}(\sigma) = \prod_{1 \le i < j \le n} \frac{x_{\sigma(i)} - x_{\sigma(j)}}{x_i - x_j}$. An element of S_n is called a **transposition**

if it exchanges two numbers and leaves all others unchanged. An element of S_n is called **even** if its sign is 1 and **odd** if its sign is -1. The set of even elements of S_n is denoted A_n .

Theorems

Proposition 1. The following are abelian groups: (i) \mathbf{Z} under addition, (ii) $\mathbf{Z}/n\mathbf{Z}$ under addition, (iii) \mathbf{R} under addition, (iv) \mathbf{R}^* under multiplication, (v) \mathbf{C}^* under multiplication, (vi) S_X if X is a set with 2 or fewer elements. The following are non-abelian groups: (vii) D_n , (viii) S_X if X is a set with 3 or more elements.

Theorem 2 (Cayley's theorem). Every group is isomorphic to a subgroup of the group of symmetries of some set.

Proposition 3. Let G be a group. A subset $H \subset G$ is a subgroup if and only if both (i) $H \neq \emptyset$, and (ii) for all $a, b \in H$ the element ab^{-1} is in H.

Theorem 4. If x and y are integers with greatest common divisor d there are integers a and b such that ax + by = d.

Theorem 5. If G is a cyclic group then every subgroup of G is cyclic.

Proposition 6. Suppose that G and H are groups with operations written multiplicatively and identity elements both called 1. If $\varphi : G \to H$ is a homomorphism of groups then (i) $\varphi(1) = 1$, (ii) $\varphi(x^{-1}) = \varphi(x)^{-1}$ for all $x \in G$, (iii) ker(φ) is a subgroup of G, (iv) im(φ) is a subgroup of H.

Proposition 7. If $\sigma \in S_n$ then $\operatorname{sgn}(\sigma) \in \{\pm 1\}$ and the function $\operatorname{sgn} : S_n \to \{\pm 1\}$ is a homomorphism. If τ is a transposition then $\operatorname{sgn}(\tau) = -1$.

Proposition 8. For complex numbers z and w, we have |zw| = |z| |w|.

Proposition 9. If $\varphi: G \to H$ is an isomorphism of groups then $\varphi^{-1}: H \to G$ is also an isomorphism.

Proposition 10. The inverse of a 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by $\frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ provided $\frac{1}{ad - bc}$ exists.

Proposition 11. Let g be an element of a group G and suppose $g^n = 1$. Then $\operatorname{ord}(g)$ is finite and divides n.

Theorem 12. Let $\varphi : G \to S_X$ be a group action. For $x \in X$, let G_x be the stabilizer of x and let O_x be the orbit of x. If G is finite then $\#G_x \cdot \#O_x = \#G$.