
Math 3140 — Fall 2012

Exam #2

Work alone. No materials except pen (or pencil) and paper allowed.
Write your solutions on a separate paper. Justify your answers. Giving
incorrect or irrelevant justification will be penalized.

Problem 1. Suppose that A, B, and C are groups with their group operations all written multiplicatively. Suppose
that ϕ : A→ B and ψ : B → C are homomorphisms of groups. Let ω = ψ ◦ ϕ. Show that the function ω : A→ C is
a homomorphism of groups.

Solution. We must show that for any x, y ∈ A we have ω(xy) = ω(x)ω(y). We have

ω(xy) = ψ(ϕ(xy)) definition of ω

= ψ(ϕ(x)ϕ(y)) ϕ is a homomorphism

= ψ(ϕ(x))ψ(ϕ(y)) ψ is a homomorphism

= ω(x)ω(y) definition of ω.

This holds for any x, y ∈ A so ω is a homomorphism.

Comments. Since this problem was worth 5 points and most people wrote very good answers, I only gave full credit
to answers that were really perfect. You should consider a score of 4/5 quite good on this problem.

Problem 2. Describe a group with 4 elements that is not isomorphic to Z/4Z. Make sure to explain how you know
this group is not isomorphic to Z/4Z.

Solution. Let G = Z/2Z × Z/2Z. Then for every (x, y) ∈ G we have (x, y) + (x, y) = (2x, 2y) which is the same
as (0, 0) modulo 2. Therefore G does not contain any element of order 4. On the other hand Z/4Z does have an
element of order 4, so these groups can’t be isomorphic.

Problem 3. Let R×R be the group of pairs (a, b) where a and b are real numbers with group operation

(a, b) + (a′, b′) = (a+ a′, b+ b′).

Let ϕ : R×R→ R be the function
ϕ(a, b) = a+ b.

Show that ϕ is a homomorphism.

Solution. We have to check that ϕ((a, b) + (a′, b′)) = ϕ(a, b) + ϕ(a′, b′). We have

ϕ((a, b) + (a′, b′)) = ϕ(a+ a′, b+ b′) definition of addition in R×R

= a+ a′ + b+ b′ definition of ϕ

= a+ b+ a′ + b′ addition in R is commutative

= ϕ(a, b) + ϕ(a′, b′) definition of ϕ.

Problem 4. Let A = 〈210, 360, 756〉 be the subgroup of Z containing 210 = 2 · 3 · 5 · 7 and 360 = 23 · 32 · 5 and
756 = 22 ·33 ·7. Recall that this means A consists of all integers of the form 210x+ 360y+ 756z with x, y, z ∈ Z. List
all numbers between 0 and 100 (inclusive) that are not in 〈210, 360〉, nor in 〈210, 756〉, nor in 〈360, 756〉. Remember
to justify your answer.



Solution. First, factor the numbers:

210 = 2 · 3 · 5 · 7
360 = 23 · 32 · 5
756 = 22 · 33 · 7.

Therefore

gcd{210, 360} = 2 · 3 · 5 = 30

gcd{210, 756} = 2 · 3 · 7 = 42

gcd{360, 756} = 22 · 32 = 36

gcd{210, 360, 756} = 2 · 3 = 6.

Now,

〈210, 360〉 = 〈gcd{210, 360}〉 = 〈30〉

〈210, 756〉 = 〈gcd{210, 756}〉 = 〈42〉

〈360, 756〉 = 〈gcd{360, 756}〉 = 〈36〉

〈210, 360, 756〉 = 〈210, gcd{360, 756}〉 = 〈210, 36〉

= 〈gcd{210, 36}〉 = 〈6〉.

Therefore A contains all multiples of 6, and 〈210, 360〉 contains all multiples of 30, and 〈210, 756〉 contains all multiples
of 42, and 〈360, 756〉 contains all multiples of 36. Therefore we want to list all numbers between 0 and 100 that are
multiples of 6 but are not multiples of 30, 42, or 36. These are:

��0 , 6, 12, 18, 24,��30,��36,��42, 48, 54,��60, 66,��72, 78,��84,��90, 96.

Problem 5. Prove that every odd permutation in Sn has even order. (Recall that an odd permutation is one whose
sign is −1.)

Solution. Let m be the order of σ ∈ Sn. Then σm = e. Therefore sgn(σm) = sgn(e). But sgn is a homomorphism so
sgn(σm) = sgn(σ)m and sgn(e) = 1. Therefore sgn(σ)m = 1.

But σ is an odd permutation so sgn(σ) = −1. Therefore (−1)m = 1, which means that m must be a multiple
of 2.

Problem 6. Let X = {1, 2, 3, 4, 5} and let Y be the set of subsets of X.

(a) How many elements does Y have?

Solution. If we want to describe a subset of X we have to decide, for each number 1, . . . , 5, whether that
number is in the subset. That’s a sequence of 5 yes or no questions that can be answered independently for a
total of 25 = 32 possibilities.

For each σ ∈ S5, let Tσ : Y → Y be the function defined by Tσ(A) = {σ(x)
∣∣ x ∈ A}.

(b) Compute T(15)(234)({1, 3, 4}).

Solution.
T(15)(234)({1, 3, 4}) = {5, 4, 2} = {2, 4, 5}.

(c) Compute T(23)({1, 5}).



Solution.
T(23)({1, 5}) = {1, 5}

(d) List the elements of the stabilizer of {1, 2, 3}. Recall that the stabilizer of an element y ∈ Y is the set of all
σ ∈ S5 such that Tσ(y) = y.

Solution. The stabilizer consists of the elements

e, (123), (132), (12), (13), (23), (45), (123)(45), (132)(45), (12)(45), (13)(45), (23)(45).

(e) How many elements will there be in the orbit of {1, 2, 3} under the action of S5 on Y ?

Solution. Let G be the stabilizer of {1, 2, 3} and O be its orbit. Then #(G)#(O) = #(S5). The size of S5 is
5! = 120 and we have just seen that #(G) = 12 so #(O) must be 10.

(f) (Extra credit) Prove that the stabilizer subgroup of {1, 2, 3} is isomorphic to S3 × S2. You may use the fact
that ϕ(σ) = Tσ is a homomorphism from S5 into SY without proving it.

Solution. Instead of writing S3 × S2, we will write S{1,2,3} × S{4,5}. Let G be the stabilizer of {1, 2, 3} in S5.

We construct a homomorphism
ψ : S{1,2,3} × S{4,5} → G

by the rule ψ(σ, τ) = στ . First we check that ψ(σ, τ) is actually in G since it is only automatic from the
definition that ψ(σ, τ) ∈ S5. To check this, we have to check that Tψ(σ,τ)({1, 2, 3}) = {1, 2, 3}. Here is the
check:

Tψ(σ,τ)({1, 2, 3}) = Tστ ({1, 2, 3}) definition of ψ

= TσTτ ({1, 2, 3}) since ϕ is a homomorphism

= Tσ({1, 2, 3}) since τ ∈ S{4,5}, Tτ fixed {1, 2, 3}
= {1, 2, 3} since σ ∈ S{1,2,3}, Tσ fixes {1, 2, 3}.

Now we check that ψ is a homomorphism

ψ((σ, τ)(σ′, τ ′)) = ψ(σσ′, ττ ′) definition of multiplication in S{1,2,3} × S{4,5}
= σσ′ττ ′ definition of ψ

= στσ′τ ′ τ and σ′ are disjoint so they commute

= ψ(σ, τ)ψ(σ′, τ ′) definition of ψ.

Note that it was very important in the above argument that σ′ and τ permuted disjoint subsets of {1, 2, 3, 4, 5}.
If this weren’t true, we couldn’t exchange their order!

Now we have to check that ψ is a bijection. Since S3×S2 andG both have 12 elements, it’s enough to show that ψ
is injective. Suppose that ψ(σ, τ) = ψ(σ′, τ ′). Then for any x ∈ {1, 2, 3, 4, 5} we have ψ(σ, τ)(x) = ψ(σ′, τ ′)(x).
Now, either x ∈ {1, 2, 3} or x ∈ {4, 5}. In the first case, we get

ψ(σ, τ)(x) = ψ(σ′, τ ′)(x)

στ(x) = σ′τ ′(x) definition of ψ

σ(x) = σ′(x) since x ∈ {1, 2, 3} and τ, τ ′ ∈ S{4,5}.

This holds for any x ∈ {1, 2, 3}, so σ = σ′. If on the other hand x ∈ {4, 5}, we get

ψ(σ, τ)(x) = ψ(σ′, τ ′)(x)

στ(x) = σ′τ ′(x) definition of ψ

τ(x) = τ ′(x) since x ∈ {4, 5} and σ, σ′ ∈ S{1,2,3}.



Definition 1. A group is a set G with an operation ∗ : G × G → G such that (i) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all
a, b, c ∈ G, (ii) there is an e ∈ G such that e ∗ a = a = a ∗ e for all a ∈ G, and (iii) for any a ∈ G there is an a−1 ∈ G
such that aa−1 = e = a−1a. The group G is said to be abelian if a ∗ b = b ∗ a for all a, b ∈ G.

A subset H ⊂ G is called a subgroup if (i) for all a, b ∈ H the element a ∗ b is in H, and (ii) H is a group with
operation ∗.

A group is called cyclic if it is isomorphic Z or it is isomorphic to Z/nZ for some integer n.
The order of an element g of a group G (written multiplicatively with identity element 1) is the smallest positive

integer n such that gn = 1.

Definition 2. Suppose that G and H are groups with operations written multiplicatively. A homomorphism
ϕ : G→ H is a function ϕ : G→ H such that ϕ(xy) = ϕ(x)ϕ(y). A homomorphism is called an isomorphism if it
is also a bijection.

The kernel of ϕ is the set ker(ϕ) = {x ∈ G
∣∣ ϕ(x) = 1} where 1 is the identity in H.

The image of ϕ is the set im(ϕ) = {y ∈ H
∣∣∃x ∈ G, y = ϕ(x)}.

Definition 3. An action of a group G on a set X is a homomorphism ϕ : G → SX . Use the notation Tg = ϕ(g).
The stabilizer of an element x ∈ X is {g ∈ G

∣∣ Tg(x) = x}. The orbit of x ∈ X is {y ∈ X
∣∣ ∃g ∈ G, Tg(x) = y}.

Notation

Z is the set of integers and R is the set of real numbers.

Dn is the set of rigid symmetries of a regular n-gon.

Z/nZ is the set of equivalence classes of integers modulo n.

gcd {a1, . . . , an} denotes the greatest common divisor of integers a1, . . . , an.

If X is a set, SX is the set of bijections from X to itself. If X = {1, 2, . . . , n} then SX is also written Sn.

If σ ∈ Sn the sign of σ is the expression sgn(σ) =
∏

1≤i<j≤n

xσ(i) − xσ(j)
xi − xj

. An element of Sn is called a transposition

if it exchanges two numbers and leaves all others unchanged. An element of Sn is called even if its sign is 1
and odd if its sign is −1. The set of even elements of Sn is denoted An.

Theorems

Proposition 1. The following are abelian groups: (i) Z under addition, (ii) Z/nZ under addition, (iii) R under
addition, (iv) R∗ under multiplication, (v) C∗ under multiplication, (vi) SX if X is a set with 2 or fewer elements.

The following are non-abelian groups: (vii) Dn, (viii) SX if X is a set with 3 or more elements.

Theorem 2 (Cayley’s theorem). Every group is isomorphic to a subgroup of the group of symmetries of some set.

Proposition 3. Let G be a group. A subset H ⊂ G is a subgroup if and only if both (i) H 6= ∅, and (ii) for all
a, b ∈ H the element ab−1 is in H.

Theorem 4. If x and y are integers with greatest common divisor d there are integers a and b such that ax+by = d.

Theorem 5. If G is a cyclic group then every subgroup of G is cyclic.

Proposition 6. Suppose that G and H are groups with operations written multiplicatively and identity elements
both called 1. If ϕ : G → H is a homomorphism of groups then (i) ϕ(1) = 1, (ii) ϕ(x−1) = ϕ(x)−1 for all x ∈ G,
(iii) ker(ϕ) is a subgroup of G, (iv) im(ϕ) is a subgroup of H.

Proposition 7. If σ ∈ Sn then sgn(σ) ∈ {±1} and the function sgn : Sn → {±1} is a homomorphism. If τ is a
transposition then sgn(τ) = −1.

Proposition 8. For complex numbers z and w, we have |zw| = |z| |w|.

Proposition 9. If ϕ : G→ H is an isomorphism of groups then ϕ−1 : H → G is also an isomorphism.

Proposition 10. The inverse of a 2× 2 matrix

(
a b
c d

)
is given by

1

ad− bc

(
d −b
−c a

)
provided

1

ad− bc
exists.

Proposition 11. Let g be an element of a group G and suppose gn = 1. Then ord(g) is finite and divides n.

Theorem 12. Let ϕ : G → SX be a group action. For x ∈ X, let Gx be the stabilizer of x and let Ox be the orbit
of x. If G is finite then #Gx ·#Ox = #G.


