Math 3140 — Fall 2012 Exam #1

Work alone. No materials except pen (or pencil) and paper allowed. Write your solutions on a separate paper. Justify your answers. Giving incorrect or irrelevant justification will be penalized.

Problem 1. Show that the function $\varphi : \mathbf{C}^* \to \mathbf{R}^*$ defined by

$$\varphi(z) = |z|^3$$

is a homomorphism.

Solution. We have $\varphi(zw) = |zw|^3$. But |zw| = |z| |w| by Proposition 8 so we get

$$\varphi(zw) = |zw|^3 = (|z| |w|)^3 = |z|^3 |w|^3 = \varphi(z)\varphi(w).$$

Therefore φ is a homomorphism by the definition of a homomorphism.

Problem 2. Suppose that σ is an element of S_n that is not contained in A_n . Prove that $\operatorname{ord}(\sigma)$ is even.

Solution. Suppose that $\sigma^k = e$. Then $\operatorname{sgn}(\sigma)^k = \operatorname{sgn}(\sigma^k) = \sigma(e) = 1$. But if σ is not in A_n then $\operatorname{sgn}(\sigma) = -1$. Therefore $(-1)^k = 1$ so k is even.

Solution. Here is another solution: Since σ is odd its sign is -1. We can write σ as a product of disjoint cycles σ_i . Then $\operatorname{ord}(\sigma) = \operatorname{lcm} \{\operatorname{ord}(\sigma_i)\}$. But remember that a cycle of odd length has sign 1 and a cycle of even length has sign -1. Therefore there must be an odd number of *i*-s such that the length of σ_i is even. In particular, there is at least one *i* such that σ_i is even. But this means that $\operatorname{lcm} \{\operatorname{ord}(\sigma_i)\}$ is divisible by the order of σ_i —namely its length—which is even.

Problem 3. (a) Compute the order of (123)(345)(567) in S_7 .

Solution. We have (123)(345)(567) = (1234567), which has order 7.

(b) Give an element of S_7 with order 12.

Solution.

(123)(4567)

has order 12 because $((123)(4567))^n = (123)^n (4567)^n$ and if $(123)^n (4567)^n = e$ then $(123)^n = e$ and $(4567)^n = e$. The former happens if and only if n is a multiple of 3 and the latter happens if and only if n is a multiple of 4. Therefore both happen if and only if n is a multiple of 12—that is, $((123)(4567))^n = e$ if n = 12 and this is the smallest positive number with this property.

(c) (Extra credit) How many elements are there in S_7 with order 12?

Solution. An element of S_7 has order 12 if and only if it is the product of a disjoint 3-cycle and 4-cycle. There are $\binom{7}{4}$ ways to choose the elements of the 3- and 4-cycles; then we have to choose how they are permuted. There are two 3-cycles of a set with 3 elements and there are six 4-cycles of a set with 4-elements. Therefore there are

$$\binom{7}{4} \cdot 2 \cdot 6 = 420$$

elements of order 12 in S_7 .

Problem 4. Let G be the subgroup of **Z** generated by $4096 = 2^{14}$ and $5832 = 2^3 \cdot 3^6$. Recall that this means G consists of all integers of the form 4096x + 5832y with $x, y \in \mathbf{Z}$.

(a) Is 32 in G? Justify your answer.

Solution. First notice that the gcd of 4096 and 5832 is 8. Therefore by Theorem 4 there are integers a and b such that 4096a + 5832b = 8. But then

$$4096 \cdot 4a + 5832 \cdot 4b = 4 \cdot 8 = 32$$

so the answer is YES.

(b) List all
$$x \in \mathbf{Z}$$
 between 0 and 10 that are not in G. Justify your answer.

Solution. If $x \in \mathbb{Z}$ is in G then gcd {4096, 5832} divides x because the gcd divides every integral linear combination of 4096 and 5832. The gcd is 8 in this case, so x is not^1 in G if and only if x is not divisible by 8. The answer is therefore {1, 2, 3, 4, 5, 6, 7, 9, 10}.

Problem 5. Let G be the set of all pairs (a, b) where $a \in \mathbb{Z}/7\mathbb{Z}$ and $b \in \mathbb{Z}/8\mathbb{Z}$. Define an operation on G by (a, b) + (a', b') = (a + a', b + b').

(a) Prove that with this operation, G is a group.

Solution. Associativity:

$$((a,b) + (a',b')) + (a'',b'') = (a + a' + a'', b + b' + b'')$$
 by associativity for **Z**/7**Z** and **Z**/8**Z**
= (a,b) + ((a',b') + (a'',b'')).

Identity: (0,0)

$$(0,0) + (a,b) = (0+a,0+b) = (a,b)$$
 $(a,b) + (0,0) = (a+0,b+0) = (a,b)$

Inverse: the inverse of (a, b) is (-a, -b)

$$(a,b) + (-a,-b) = (a + (-a), b + (-b)) \qquad (-a,-b) + (a,b) = (-a + a, -b + b) = (0,0) = (0,0).$$

(b) Show that the order of the element $(1,1) \in G$ is 56.

Solution. The order is 56. We have 56(1,1) = (56,56) = (0,0) because $56 \equiv 0 \pmod{7}$ and $56 \equiv 0 \pmod{8}$. On the other hand, if $n(1,1) \equiv (0,0)$ then $n \equiv 0 \pmod{7}$ and $n \equiv 0 \pmod{8}$ so n is divisible by both 7 and 8. Therefore n is divisible by $7 \cdot 8 = 56$. Thus 56 is the least positive integer n such that n(1,1) = (0,0). That is, $56 = \operatorname{ord}(1,1)$.

(c) Show that G is isomorphic to $\mathbb{Z}/56\mathbb{Z}$.

Solution. Consider the function $\varphi : \mathbb{Z}/56\mathbb{Z} \to G$ sending n to (n, n). We have to check that this is well-defined: if $a \equiv b \pmod{56}$ then b = a + 56k so $\varphi(b) = (a + 56k, a + 56k)$. But $a + 56k \equiv a \pmod{7}$ and $a + 56k \equiv a \pmod{7}$.

We check φ is a homomorphism: if $a, b \in \mathbb{Z}/56\mathbb{Z}$ then

$$\varphi(a+b) = (a+b, a+b) = (a, a) + (b, b) = \varphi(a) + \varphi(b).$$

This holds for all $a, b \in \mathbb{Z}/56\mathbb{Z}$ so φ is a homomorphism.

We can also check that φ is injective. If $\varphi(n) = (0,0)$ then n is a multiple of both 7 and 8 so n is a multiple of 56—that is, $n \equiv 0 \pmod{56}$.

Finally, note that both G and $\mathbb{Z}/56\mathbb{Z}$ have 56 elements. Therefore an injective function from $\mathbb{Z}/56\mathbb{Z}$ to G must be a bijection. Thus φ is an injective homomorphism, so φ is an isomorphism.

 \leftarrow_1

¹I left out the word not in an earlier version of the solutions. Thanks Laura for catching this!

Solution. Another homomorphism that works is $\psi: G \to {\mathbf Z}/56{\mathbf Z}$ defined by

$$\psi(a,b) = 8a + 7b.$$

This is well-defined, for if $a \equiv a' \pmod{7}$ and $b \equiv b' \pmod{8}$ then a' = a + 7k and $b' = b + 8\ell$ so

 $\psi(a',b') = \psi(a+7k,b+8\ell) = 8a+56k+7b+56\ell = \psi(a,b)+56(k+\ell) \equiv \psi(a,b) \pmod{56}.$

Therefore $\psi(a', b') = \psi(a, b)$ if (a', b') and (a, b) represent the same element of $\mathbb{Z}/56\mathbb{Z}$.

This is injective, for if 8a + 7b = 8a' + 7b' then 8(a - a') = 7(b - b') so 8 divides b - b' and 7 divides a - a' (because 7 and 8 are relatively prime). This means that $a \equiv a' \pmod{7}$ and $b \equiv b' \pmod{8}$ so (a, b) = (a', b') in G.

It is also a homomorphism, because

$$\psi((a,b) + (a',b')) = \psi(a + a', b + b')$$

= 8(a + a') + 7(b + b')
= (8a + 7b) + (8a' + 7b')
= $\psi(a,b) + \psi(a',b').$

Thus ψ is an injective homomorphism between groups of the same size, hence an isomorphism.

Definition 1. A group is a set G with an operation $*: G \times G \to G$ such that (i) a * (b * c) = (a * b) * c for all $a, b, c \in G$, (ii) there is an $e \in G$ such that e * a = a = a * e for all $a \in G$, and (iii) for any $a \in G$ there is an $a^{-1} \in G$ such that $aa^{-1} = e = a^{-1}a$. The group G is said to be **abelian** if a * b = b * a for all $a, b \in G$.

A subset $H \subset G$ is called a **subgroup** if (i) for all $a, b \in H$ the element a * b is in H, and (ii) H is a group with operation *.

A group is called **cyclic** if it is isomorphic **Z** or it is isomorphic to $\mathbf{Z}/n\mathbf{Z}$ for some integer *n*.

Definition 2. Suppose that G and H are groups with operations written multiplicatively. A homomorphism $\varphi: G \to H$ is a function $\varphi: G \to H$ such that $\varphi(xy) = \varphi(x)\varphi(y)$. A homomorphism is called an **isomorphism** if it is also a bijection.

The **kernel** of φ is the set ker $(\varphi) = \{x \in G \mid \varphi(x) = 1\}$ where 1 is the identity in *H*.

The **image** of φ is the set $\operatorname{im}(\varphi) = \{y \in H \mid \exists x \in G, y = \varphi(x)\}.$

Notation

 \mathbf{Z} is the set of integers and \mathbf{R} is the set of real numbers.

 D_n is the set of rigid symmetries of a regular *n*-gon.

 $\mathbf{Z}/n\mathbf{Z}$ is the set of equivalence classes of integers modulo n.

 $gcd \{a_1, \ldots, a_n\}$ denotes the greatest common divisor of integers a_1, \ldots, a_n .

A complex number is a symbol x + iy where x and y are real numbers; the set of complex numbers is denoted **C**. The basic operations on complex numbers are:

addition: (x + iy) + (z + iw) = (x + z) + i(y + w)multiplication: (x + iy)(z + iw) = (xz - yw) + i(xw + yz)conjugation: $\overline{x + iy} = x - iy$ absolute value: $|x + iy| = \sqrt{x^2 + y^2}$

If X is a set, S_X is the set of bijections from X to itself. If $X = \{1, 2, ..., n\}$ then S_X is also written S_n .

If $\sigma \in S_n$ the sign of σ is the expression $\operatorname{sgn}(\sigma) = \prod_{1 \le i < j \le n} \frac{x_{\sigma(i)} - x_{\sigma(j)}}{x_i - x_j}$. An element of S_n is called a

transposition if it exchanges two numbers and leaves all others unchanged. An element of S_n is called **even** if its sign is 1 and **odd** if its sign is -1. The set of even elements of S_n is denoted A_n .

Theorems

Proposition 1. The following are abelian groups: (i) \mathbf{Z} under addition, (ii) $\mathbf{Z}/n\mathbf{Z}$ under addition, (iii) \mathbf{R} under addition, (iv) \mathbf{R}^* under multiplication, (v) \mathbf{C}^* under multiplication, (vi) S_X if X is a set with 2 or fewer elements. The following are non-abelian groups: (vii) D_n , (viii) S_X if X is a set with 3 or more elements.

Theorem 2 (Cayley's theorem). Every group is isomorphic to a subgroup of the group of symmetries of some set.

Proposition 3. Let G be a group. A subset $H \subset G$ is a subgroup if and only if both (i) $H \neq \emptyset$, and (ii) for all $a, b \in H$ the element ab^{-1} is in H.

Theorem 4. If x and y are integers with greatest common divisor d there are integers a and b such that ax + by = d.

Theorem 5. If G is a cyclic group then every subgroup of G is cyclic.

Proposition 6. Suppose that G and H are groups with operations written multiplicatively and identity elements both called 1. If $\varphi : G \to H$ is a homomorphism of groups then (i) $\varphi(1) = 1$, (ii) $\varphi(x^{-1}) = \varphi(x)^{-1}$ for all $x \in G$, (iii) ker(φ) is a subgroup of G, (iv) im(φ) is a subgroup of H.

Proposition 7. If $\sigma \in S_n$ then $\operatorname{sgn}(\sigma) \in \{\pm 1\}$ and the function $\operatorname{sgn} : S_n \to \{\pm 1\}$ is a homomorphism. If τ is a transposition then $\operatorname{sgn}(\tau) = -1$.

Proposition 8. For complex numbers z and w, we have |zw| = |z| |w|.

Proposition 9. If $\varphi: G \to H$ is an isomorphism of groups then $\varphi^{-1}: H \to G$ is also an isomorphism.

Proposition 10. The inverse of a 2×2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is given by $\frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ provided $\frac{1}{ad - bc}$ exists.

Proposition 11. Let g be an element of a group G and suppose $g^n = 1$. Then $\operatorname{ord}(g)$ is finite and divides n.