
Math 3140 — Fall 2012

Exam #1

Work alone. No materials except pen (or pencil) and paper allowed.
Write your solutions on a separate paper. Justify your answers. Giving
incorrect or irrelevant justification will be penalized.

Problem 1. Show that the function ϕ : C∗ → R∗ defined by

ϕ(z) = |z|3

is a homomorphism.

Solution. We have ϕ(zw) = |zw|3. But |zw| = |z| |w| by Proposition 8 so we get

ϕ(zw) = |zw|3 =
(|z| |w|)3 = |z|3 |w|3 = ϕ(z)ϕ(w).

Therefore ϕ is a homomorphism by the definition of a homomorphism.

Problem 2. Suppose that σ is an element of Sn that is not contained in An. Prove that ord(σ) is even.

Solution. Suppose that σk = e. Then sgn(σ)k = sgn(σk) = σ(e) = 1. But if σ is not in An then sgn(σ) = −1.
Therefore (−1)k = 1 so k is even.

Solution. Here is another solution: Since σ is odd its sign is −1. We can write σ as a product of disjoint cycles σi.
Then ord(σ) = lcm {ord(σi)}. But remember that a cycle of odd length has sign 1 and a cycle of even length has
sign −1. Therefore there must be an odd number of i-s such that the length of σi is even. In particular, there is
at least one i such that σi is even. But this means that lcm {ord(σi)} is divisible by the order of σi—namely its
length—which is even.

Problem 3. (a) Compute the order of (123)(345)(567) in S7.

Solution. We have (123)(345)(567) = (1234567), which has order 7.

(b) Give an element of S7 with order 12.

Solution.
(123)(4567)

has order 12 because ((123)(4567))n = (123)n(4567)n and if (123)n(4567)n = e then (123)n = e and (4567)n =
e. The former happens if and only if n is a multiple of 3 and the latter happens if and only if n is a multiple
of 4. Therefore both happen if and only if n is a multiple of 12—that is, ((123)(4567))n = e if n = 12 and this
is the smallest positive number with this property.

(c) (Extra credit) How many elements are there in S7 with order 12?

Solution. An element of S7 has order 12 if and only if it is the product of a disjoint 3-cycle and 4-cycle. There
are

(
7
4

)
ways to choose the elements of the 3- and 4-cycles; then we have to choose how they are permuted.

There are two 3-cycles of a set with 3 elements and there are six 4-cycles of a set with 4-elements. Therefore
there are (

7

4

)
· 2 · 6 = 420

elements of order 12 in S7.

Problem 4. Let G be the subgroup of Z generated by 4096 = 214 and 5832 = 23 · 36. Recall that this means G
consists of all integers of the form 4096x+ 5832y with x, y ∈ Z.



(a) Is 32 in G? Justify your answer.

Solution. First notice that the gcd of 4096 and 5832 is 8. Therefore by Theorem 4 there are integers a and b
such that 4096a+ 5832b = 8. But then

4096 · 4a+ 5832 · 4b = 4 · 8 = 32

so the answer is YES.

(b) List all x ∈ Z between 0 and 10 that are not in G. Justify your answer.

Solution. If x ∈ Z is in G then gcd {4096, 5832} divides x because the gcd divides every integral linear combi-
nation of 4096 and 5832. The gcd is 8 in this case, so x is not1 in G if and only if x is not divisible by 8. The ←1

answer is therefore {1, 2, 3, 4, 5, 6, 7, 9, 10}.

Problem 5. Let G be the set of all pairs (a, b) where a ∈ Z/7Z and b ∈ Z/8Z. Define an operation on G by
(a, b) + (a′, b′) = (a+ a′, b+ b′).

(a) Prove that with this operation, G is a group.

Solution. Associativity:

((a, b) + (a′, b′)) + (a′′, b′′) = (a+ a′ + a′′, b+ b′ + b′′) by associativity for Z/7Z and Z/8Z

= (a, b) + ((a′, b′) + (a′′, b′′)).

Identity: (0, 0)

(0, 0) + (a, b) = (0 + a, 0 + b) = (a, b) (a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b)

Inverse: the inverse of (a, b) is (−a,−b)

(a, b) + (−a,−b) = (a+ (−a), b+ (−b)) (−a,−b) + (a, b) = (−a+ a,−b+ b)

= (0, 0) = (0, 0).

(b) Show that the order of the element (1, 1) ∈ G is 56.

Solution. The order is 56. We have 56(1, 1) = (56, 56) = (0, 0) because 56 ≡ 0 (mod 7) and 56 ≡ 0 (mod 8).
On the other hand, if n(1, 1) ≡ (0, 0) then n ≡ 0 (mod 7) and n ≡ 0 (mod 8) so n is divisible by both 7 and
8. Therefore n is divisible by 7 · 8 = 56. Thus 56 is the least positive integer n such that n(1, 1) = (0, 0). That
is, 56 = ord(1, 1).

(c) Show that G is isomorphic to Z/56Z.

Solution. Consider the function ϕ : Z/56Z→ G sending n to (n, n). We have to check that this is well-defined:
if a ≡ b (mod 56) then b = a + 56k so ϕ(b) = (a + 56k, a + 56k). But a + 56k ≡ a (mod 7) and a + 56k ≡ a
(mod 8) so (a+ 56k, a+ 56k) = (a, a) in G. That is, ϕ(b) = ϕ(a).

We check ϕ is a homomorphism: if a, b ∈ Z/56Z then

ϕ(a+ b) = (a+ b, a+ b) = (a, a) + (b, b) = ϕ(a) + ϕ(b).

This holds for all a, b ∈ Z/56Z so ϕ is a homomorphism.

We can also check that ϕ is injective. If ϕ(n) = (0, 0) then n is a multiple of both 7 and 8 so n is a multiple of
56—that is, n ≡ 0 (mod 56).

Finally, note that both G and Z/56Z have 56 elements. Therefore an injective function from Z/56Z to G must
be a bijection. Thus ϕ is an injective homomorphism, so ϕ is an isomorphism.

1I left out the word not in an earlier version of the solutions. Thanks Laura for catching this!



Solution. Another homomorphism that works is ψ : G→ Z/56Z defined by

ψ(a, b) = 8a+ 7b.

This is well-defined, for if a ≡ a′ (mod 7) and b ≡ b′ (mod 8) then a′ = a+ 7k and b′ = b+ 8` so

ψ(a′, b′) = ψ(a+ 7k, b+ 8`) = 8a+ 56k + 7b+ 56` = ψ(a, b) + 56(k + `) ≡ ψ(a, b) (mod 56).

Therefore ψ(a′, b′) = ψ(a, b) if (a′, b′) and (a, b) represent the same element of Z/56Z.

This is injective, for if 8a + 7b = 8a′ + 7b′ then 8(a − a′) = 7(b − b′) so 8 divides b − b′ and 7 divides a − a′
(because 7 and 8 are relatively prime). This means that a ≡ a′ (mod 7) and b ≡ b′ (mod 8) so (a, b) = (a′, b′)
in G.

It is also a homomorphism, because

ψ((a, b) + (a′, b′)) = ψ(a+ a′, b+ b′)

= 8(a+ a′) + 7(b+ b′)

= (8a+ 7b) + (8a′ + 7b′)

= ψ(a, b) + ψ(a′, b′).

Thus ψ is an injective homomorphism between groups of the same size, hence an isomorphism.



Definition 1. A group is a set G with an operation ∗ : G × G → G such that (i) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all
a, b, c ∈ G, (ii) there is an e ∈ G such that e ∗ a = a = a ∗ e for all a ∈ G, and (iii) for any a ∈ G there is an a−1 ∈ G
such that aa−1 = e = a−1a. The group G is said to be abelian if a ∗ b = b ∗ a for all a, b ∈ G.

A subset H ⊂ G is called a subgroup if (i) for all a, b ∈ H the element a ∗ b is in H, and (ii) H is a group with
operation ∗.

A group is called cyclic if it is isomorphic Z or it is isomorphic to Z/nZ for some integer n.

Definition 2. Suppose that G and H are groups with operations written multiplicatively. A homomorphism
ϕ : G→ H is a function ϕ : G→ H such that ϕ(xy) = ϕ(x)ϕ(y). A homomorphism is called an isomorphism if it
is also a bijection.

The kernel of ϕ is the set ker(ϕ) = {x ∈ G
∣∣ ϕ(x) = 1} where 1 is the identity in H.

The image of ϕ is the set im(ϕ) = {y ∈ H
∣∣∃x ∈ G, y = ϕ(x)}.

Notation

Z is the set of integers and R is the set of real numbers.

Dn is the set of rigid symmetries of a regular n-gon.

Z/nZ is the set of equivalence classes of integers modulo n.

gcd {a1, . . . , an} denotes the greatest common divisor of integers a1, . . . , an.

A complex number is a symbol x+ iy where x and y are real numbers; the set of complex numbers is denoted
C. The basic operations on complex numbers are:

addition: (x+ iy) + (z + iw) = (x+ z) + i(y + w)

multiplication: (x+ iy)(z + iw) = (xz − yw) + i(xw + yz)

conjugation: x+ iy = x− iy
absolute value: |x+ iy| =

√
x2 + y2

If X is a set, SX is the set of bijections from X to itself. If X = {1, 2, . . . , n} then SX is also written Sn.

If σ ∈ Sn the sign of σ is the expression sgn(σ) =
∏

1≤i<j≤n

xσ(i) − xσ(j)
xi − xj

. An element of Sn is called a

transposition if it exchanges two numbers and leaves all others unchanged. An element of Sn is called even
if its sign is 1 and odd if its sign is −1. The set of even elements of Sn is denoted An.

Theorems

Proposition 1. The following are abelian groups: (i) Z under addition, (ii) Z/nZ under addition, (iii) R under
addition, (iv) R∗ under multiplication, (v) C∗ under multiplication, (vi) SX if X is a set with 2 or fewer elements.

The following are non-abelian groups: (vii) Dn, (viii) SX if X is a set with 3 or more elements.

Theorem 2 (Cayley’s theorem). Every group is isomorphic to a subgroup of the group of symmetries of some set.

Proposition 3. Let G be a group. A subset H ⊂ G is a subgroup if and only if both (i) H 6= ∅, and (ii) for all
a, b ∈ H the element ab−1 is in H.

Theorem 4. If x and y are integers with greatest common divisor d there are integers a and b such that ax+by = d.

Theorem 5. If G is a cyclic group then every subgroup of G is cyclic.

Proposition 6. Suppose that G and H are groups with operations written multiplicatively and identity elements
both called 1. If ϕ : G → H is a homomorphism of groups then (i) ϕ(1) = 1, (ii) ϕ(x−1) = ϕ(x)−1 for all x ∈ G,
(iii) ker(ϕ) is a subgroup of G, (iv) im(ϕ) is a subgroup of H.

Proposition 7. If σ ∈ Sn then sgn(σ) ∈ {±1} and the function sgn : Sn → {±1} is a homomorphism. If τ is a
transposition then sgn(τ) = −1.

Proposition 8. For complex numbers z and w, we have |zw| = |z| |w|.

Proposition 9. If ϕ : G→ H is an isomorphism of groups then ϕ−1 : H → G is also an isomorphism.

Proposition 10. The inverse of a 2× 2 matrix

(
a b
c d

)
is given by

1

ad− bc

(
d −b
−c a

)
provided

1

ad− bc
exists.

Proposition 11. Let g be an element of a group G and suppose gn = 1. Then ord(g) is finite and divides n.


