Note: changing barn on dow(T) does not change
in (T) — ro if you only need in (T) then
do column operations to find a barn

$$\begin{bmatrix} m[T]_{\alpha}^{R} = im[T]_{\alpha}^{R} \end{bmatrix}$$

· changing basis on color (T) does not change
ler (T) — ro if you only need ler (T) then
do row operations to find ler (T)
 $\begin{bmatrix} tr[T]_{\alpha}^{R} = lm[T]_{\alpha}^{R'} \end{bmatrix}$
· don't have to go all the way to $\left(\frac{T}{0}\right)^{0}$
to find image or lernel — just yo for enough
that you can be what image and lernel one.

Find a system of equation (Lefining image

$$im = im \begin{pmatrix} i & 0 \\ -2 & 5 \end{pmatrix}$$
 (Nead 1 equation (incomparing the equation (inc

$$im(T) = br(-7 5 - 1)$$

s (1,2,3) in the image? [Does upter of equs. have solution]
[is (1,2,3) in span
$$\left(\begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} -1\\2\\2 \end{pmatrix}, \begin{pmatrix} -1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\-2\\-2 \end{pmatrix} \right)$$

= span $\left(\begin{pmatrix} 1\\-2\\-2\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\3 \end{pmatrix} \right)$]
it rank $\left(M \begin{pmatrix} 1\\2\\3 \end{pmatrix} > rank \begin{pmatrix} M \end{pmatrix} ?$
yes: $\begin{pmatrix} 1\\2\\3 \end{pmatrix} \in im(T)$
same as rank $\begin{pmatrix} 1\\2\\-2\\-2\\5 \end{bmatrix} \notin in(T)$
same as rank $\begin{pmatrix} 1\\-2\\-2\\5 \end{bmatrix} = 2$
so $\begin{pmatrix} \frac{1}{2}\\3 \end{pmatrix} \in im(M)$.

Find a vector
$$v \cdot (x_{1}y_{1}, w)$$
 inderthat $T(v) = (\frac{1}{3})^{7}$
Solve by doing row opt simultaneously to
[T] and $v \cdot$
 $\begin{pmatrix} 2 & i & -1 & 2 & | & 1 \\ 3 & i & 2 & 1 & | & 2 \\ 1 & -2 & 17 & -9 & | & 3 \end{pmatrix}$ $M_{V} = W$
 $\begin{pmatrix} 2 & i & -1 & 2 & | & 1 \\ 1 & 0 & 3 & -1 & | & 1 \\ 5 & 0 & 15 & -5 & | & 5 \end{pmatrix}$
 $\begin{pmatrix} 2 & i & -1 & 2 & | & 1 \\ 1 & 0 & 3 & -1 & | & 1 \\ 1 & 0 & 3 & -1 & | & 1 \end{pmatrix}$
 $\begin{pmatrix} 4 & 1 & 5 & 0 & | & 3 \\ 1 & 0 & 3 & -1 & | & 1 \\ 1 & 0 & 3 & -1 & | & 1 \end{pmatrix}$
 $\begin{pmatrix} 4 & 1 & 5 & 0 & | & 3 \\ 1 & 0 & 3 & -1 & | & 1 \\ 1 & 0 & 3 & -1 & | & 1 \end{pmatrix}$
 $so = \sqrt{-}(0, 3, 0, -1)$ works.