Def Suppose
$$T:V \rightarrow W$$
 is a little definitions
linear transformation.
lare $(T) = N(T) = \frac{1}{7} (v : T(v) = 3$ linear
in $(T) = R(T) = T(v) = \frac{1}{7} (v) : v \in V$ image
Theorem If V is a finite dimensional
vector space and $T:V \rightarrow W$ is
Linear transformation then
dive V = dimeter $(T) + dim im(T)$.
Example let $V = Pn(R)$ and let
 $T:V \rightarrow V$ be the dimension
transformation $T(f) = f'$.
Claim if $n \ge 0$, $im(T) = Pn_1(R)$
 $lar(T) = Po(R)$.
Economic Proder): $P_1(R) = \frac{1}{2} (v)$.
Claim if $n \ge 0$, $im(T) = \frac{1}{2} (v)$.
Claim if $n \ge 0$, $im(T) = \frac{1}{2} (v)$.
Claim if $n \ge 0$, $m(T) = \frac{1}{2} (v)$.
 $Lowethis Po(R)$ is $f' \in Pn_1(R)$
 $if g \in Pn_1(R)$ then let $f(x) = \int_0^x \frac{1}{2} (v) dx$.
Thus $f(v) \in Pn(R)$ and $f'(v) = g(v)$
 $if g \in Pn_1(R)$ then $dv f(x) = \int_0^x \frac{1}{2} (v) dx$.
Thus $f(v) \in Pn(R)$.
 $lowet in(T) = Pn_1(R)$.
 $lowet in(T) = Pn_1(R)$.

dim Po
$$(R) = 1$$

dim Pn $(R) = n+1$
so dime her $(T) + \lambda in im (T) = \lambda im Pn (R)$, as
the theorem says.

Lemma If
$$T:V \longrightarrow W$$
 is a linear transformation and
 $S \subseteq V$ then $T(span(S)) = span(T(S))$.
Proof $W \in span(T(S)) \iff W = \sum_{i=1}^{n} a_i T(v_i)$ for some $v_{i_1, \dots, v_n} \in S$
 $\iff W = T(\sum_{i=1}^{n} a_i v_i)$ for some $v_{i_1, \dots, v_n} \in S$
 $\iff W \in T(span(S))$.

We want to prove that dim in
$$(T) = m$$
. We will
show that $T(W_1), ..., T(W_m)$ are a bank of
in (T) . This has two parts:
spanning: span $\{T(W_1), ..., T(W_m)\}$
= span $\{T(W_1), ..., T(W_n), T(W_1), ..., T(W_m)\}$
 O since $V_{13} - J_{14}$ ehr(T)
= $T(span \{V_{13} - J_{14}, W_{13}, ..., W_m\}$ [by Lemma]
= $T(V)$ [since $\{V_{13} - J_{14}, W_{13}, ..., W_m\}$ is a basis of V
= im (T) [defn. of im (T)]

livewly independent:
Suppose
$$\sum_{i=1}^{m} a_i T(w_i) = 0$$

then $T\left(\sum_{i=1}^{m} a_i w_i\right) = 0$
So $\sum_{i=1}^{m} a_i w_i$ else (T) [by then of ber (T)]
So $\sum_{i=1}^{m} a_i w_i = \sum_{j=1}^{m} b_j v_j$ [since $|v_{1,...,v_n}|$ and a
so $\sum_{i=1}^{m} a_i w_i = \sum_{j=1}^{m} b_j v_j$ [since $|v_{1,...,v_n}|$ and a
bear of ber (T)]
So $\sum_{i=1}^{m} b_j v_j - \sum_{i=1}^{m} a_i w_i = 5$
But $\sum_{i=1}^{m} v_{i,...,v_n,w_{i_1,...,v_n}} w_n$ and diversity indep.
($v = a_i = b_j = 0$ for all i_j].
Hence $T(w_i)_{j,...,j} T(w_n)$ are independent.