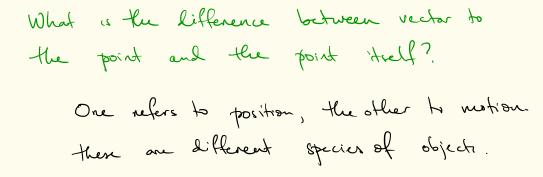
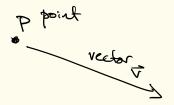
Azenda 0) sign in /attendance

1) exercises -





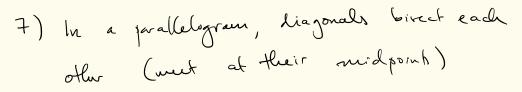
Exercises
Productive home:

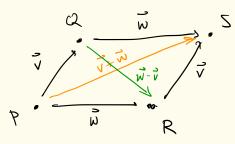
$$t=0$$

 $A-P = (-5, 7, 1)$
 $t=0$
 $A-P = (-5, 7, 1)$
 a live through P, Q :
 $t=-1$
 $P = (-3, -2, 4)$
 $P = (-3, -2, 4)$
 $P = (-3, -2, 4) + t(-7)$
 a live through P, Q :
 $t=-1$
 Q $Q + t (P-Q): t \in \mathbb{R}^{2}_{1}$
 $Q = (-3, -2, 4) + t(-7)$
 $a = (-3, -$

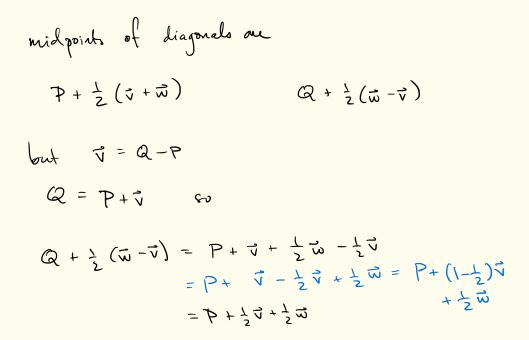
6) If P, Q are points, hercuite point that
is halfway between.

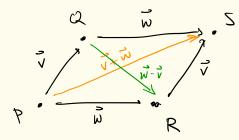
$$\vec{v} = Q - P$$
 = vcc. from P to Q.
travel half on far:
 $P + \frac{1}{2}\vec{v}$
or $\vec{w} = P - Q = -\frac{1}{2}\vec{v}$ $P + \frac{1}{2}\vec{v}$
 $Q + \frac{1}{2}\vec{w}$.





need to check midpointe me Au same.







Here we are studying the vector space V of linear
motions in the plane. We used some
basic facts about theme vectors in our
discussion:
[VS3] Or There is a special element of V called O.
i) If
$$\vec{v}$$
, $\vec{w} \in V$, there is a vector
 $\vec{v} + \vec{w} \in V$ (that represents the linear metrom
equivalent to \vec{v} then \vec{w})
4.) If $\vec{v} \in V$ and $\lambda \in \mathbb{R}$ then there
is a vector $\lambda \vec{v}$ (representing linear
motion by λ times on for in lineation
 $f(\vec{v})$.
[VS2] 3) $\forall \vec{u}, \vec{v}, \vec{w} \in V$, $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
[VS3] 5) $\forall \vec{v} \in V$, $\vec{v} + \vec{v} = \vec{v}$.
[VS4] 6) $\forall \vec{v} \in V$, $\vec{u} \in V$, $\vec{v} + \vec{w} = \vec{v}$.
[VS4] 6) $\forall \vec{v} \in V$, $\vec{u} \in V$, $\vec{v} + \vec{w} = \vec{v}$.

$$\begin{bmatrix} VS5 \end{bmatrix} + Y \forall \epsilon V, \quad 1 \forall = \forall \\ VS6 \end{bmatrix} + \forall \epsilon V, \quad Y \lambda, \mu \in \mathbb{R}, \quad \lambda(\mu \forall) = (\lambda \mu) \forall \\ VS8 \end{bmatrix} + \forall \epsilon V, \quad Y \lambda, \mu \in \mathbb{R}, \quad (\lambda + \mu) \forall = \lambda \forall + \mu \forall \\ VS7 \end{bmatrix} = \lambda \psi + \psi + \lambda \in \mathbb{R}, \quad \lambda(\psi + \psi) = \lambda \psi + \lambda \forall$$

a)
$$V = \mathbb{R}^{n} = \{(x_{1}, \dots, x_{n}) : x_{i} \in \mathbb{R}^{k}\}$$

 $\overline{O} = (O_{1}, \dots, O) \qquad (for ((\dots, x_{n}), (y_{1}, \dots, y_{n}) \in \mathbb{R}^{n}))$
 $(x_{1}, \dots, x_{n}) + (y_{1}, \dots, y_{n}) = (x_{1} + y_{1}, \dots, x_{n} + y_{n})$
 $\lambda (x_{1}, \dots, x_{n}) = (\lambda x_{1}, \lambda x_{2}, \dots, \lambda x_{n}) \qquad (for \lambda \in \mathbb{R}^{n})$
 $V_{SS} fals! \qquad for = (2\lambda x_{1}, \lambda x_{2}, \dots, \lambda x_{n}) \qquad (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n})$
Can \mathbb{R}^{n} have other vector space ctructures?

[VS1] $\forall \vec{u}, \vec{v} \in \mathbb{R}^{n}$, $\vec{u} + \vec{v} = \vec{v} + \vec{u}$. Proof Suppore it, v e IR". Therefore $\vec{u} = (x_1, \dots, x_n)$ for some $x_1, \dots, x_n \in \mathbb{R}$ and $\vec{v} = (y_1, \dots, y_n)$ for some $y_1, \dots, y_n \in \mathbb{R}$. $\vec{v} + \vec{v} = (x_{1}, \dots, x_{n}) + (y_{1}, \dots, y_{n})$ (lef of i , i alos ve) $=(x_{1}+y_{1},...,x_{n}+y_{n})$ (def. of + R"). $\vec{v} + \vec{u} = (y_1, \dots, y_n) + (x_1, \dots, x_n)$ { same reasons = (y,+x,, ..., y,+x,) These are the same because x; +y;=y;+x; Since t in IR is commutative! QED.

[VS7] $\forall \lambda \in \mathbb{R}$, $\forall \vec{u}, \vec{v} \in \mathbb{R}^{n}$, $\lambda (\vec{u} + \vec{v}) = \lambda \vec{u} + \lambda \vec{v}$. $\neq \underline{roof}$

What is the field F? A field is a set with 2 special elements 0 = 1 0,1 eF and two special operations +,. With a bunch of rules: [benically +, -, ×, - behave or expected] All linear algebra can be done using an arbitrary field in place of IR. Examples of fields $C = \{a + bi : a, b \in \mathbb{R}\}$ R = } m : m, n are integare, n = 0 g R X is a field iff a prime int. ZhZ

Example let V= IR with
$$\vec{O} = 0$$

and $F = Q$ $\vec{u} + \vec{v} = u + v$ $u, v \in IR$
 $\lambda \vec{v} = \lambda v$ if $\lambda \in Q$, $v \in R$