Question 1. Prove the following statements about linear transformations:

- (a) If $f: U \to V$ and $g: V \to W$ and $h: V \to W$ are linear transformations then $(g+h) \circ f = g \circ f + h \circ f$.
- (b) If $f: U \to V$ and $g: U \to V$ and $h: V \to W$ are linear transformations then $h \circ (f+g) = h \circ f + h \circ g$.
- (c) If $f: U \to V$ and $g: V \to W$ and $h: W \to X$ are linear transformations then $h \circ (g \circ f) = (h \circ g) \circ f$.
- (d) If $f: U \to V$ is a linear transformation and $\mathrm{id}_U: U \to U$ and $\mathrm{id}_V: V \to V$ are the identity transformations then $\mathrm{id}_V \circ f = f \circ \mathrm{id}_U = f$.
- (e) If λ is a scalar and $f: U \to V$ and $g: V \to W$ are linear transformations then $\lambda.(g \circ f) = (\lambda.g) \circ f = g \circ (\lambda.f)$.

Question 2. Prove the following statements about matrices:

- (a) If F is an $n \times p$ matrix and G and H are $m \times n$ matrices then (G+H)F = GF + HF.
- (b) If F and G are $n \times p$ matrices and H is an $m \times n$ matrix then H(F+G) = HF + HG.
- (c) If F is an $p \times q$ matrix and g is an $n \times p$ matrix and H is an $m \times n$ matrix then H(GF) = (HG)F.
- (d) If F is an $m \times n$ matrix and I_m is the $m \times m$ identity matrix and I_n is the $n \times n$ identity matrix then $I_m F = F I_n = F$.
- (e) If λ is a scalar and F is an $n \times p$ matrix and G is an $m \times n$ matrix then $\lambda.(GF) = (\lambda.G)F = G(\lambda.F).$