Lemma 1 (Exchange lemma). Suppose that $T \subseteq S$ are subsets of a vector space V. If $\mathbf{v} \in \text{span}(S) - \text{span}(T)$ then there is some $\mathbf{w} \in S$ such that $(S - \{\mathbf{w}\}) \cup \{\mathbf{v}\}$ has the same span as S.

Proof. Since $\mathbf{v} \in \text{span}(S)$ there are some vectors $\mathbf{w}_j \in S$ and coefficients $a_j \in F$ such that

$$\mathbf{v} = \sum a_j \mathbf{w}_j.$$

Since $\mathbf{v} \notin \operatorname{span}(T)$, there is at least one \mathbf{w}_j that is not in T and for which $a_j \neq 0$. Then

$$\mathbf{w}_j = a_j^{-1} \mathbf{v} - \sum_{i \neq j} a_j^{-1} a_i \mathbf{w}_i$$

and this means that, if we define $\mathbf{w} = \mathbf{w}_j$, that

$$\operatorname{span}((S - \{\mathbf{w}\}) \cup \{\mathbf{v}\}) = \operatorname{span}(S \cup \{\mathbf{v}\}) = \operatorname{span}(S)$$

since $\mathbf{w} \in \operatorname{span}(S \cup \{\mathbf{v}\})$ and $\mathbf{v} \in \operatorname{span}(S)$.

Theorem 1 (Replacement theorem). Suppose that V is a vector space, that $S \subseteq V$ is a set of linearly independent vectors, and that $T \subseteq V$ is a generating set of vectors. Then the cardinality of S is \leq the cardinality of T.

Proof. The strategy of the proof is to replace T with another spanning collection of vectors T' having the same cardinality but containing S. We do this by induction on the size of S.

- STEP 1. Choose an ordering on the elements of S. If S is infinite, this should be a *well*-ordering. In the finite case, this means we can write $S = {\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n}$.
- STEP 2. For each i = 0, ..., n, we will inductively define a set T_i of vectors of V such that $\mathbf{v}_j \in T_i$ for all $j \leq i$ and $\operatorname{span}(T_i) = \operatorname{span}(T)$. We begin with $T_0 = T$.
- STEP 3. Assume, by induction, that $\operatorname{span}(T_i) = \operatorname{span}(T)$ and $\mathbf{v}_1, \ldots, \mathbf{v}_i \in T_i$. By the exchange lemma, we can find a $\mathbf{w} \in T - {\mathbf{v}_1, \ldots, \mathbf{v}_i}$ such that $\operatorname{span}((T_i - {\mathbf{w}}) \cup {\mathbf{v}_{i+1}}) = \operatorname{span}(T_i)$. Define $T_{i+1} = (T_i - {\mathbf{w}}) \cup {\mathbf{v}_{i+1}}$.

	-	-	