Lemma 1 (Exchange lemma). Suppose that T C S are subsets of a vector space
V. If v € span(S) —span(T') then there is some w € S such that (S—{w})U{v}
has the same span as S.

Proof. Since v € span(S) there are some vectors w; € S and coefficients a; € F'
such that
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and this means that, if we define w = w, that

span((S — {w}) U{v}) = span(S U {v}) = span(S)

since w € span(S U {v}) and v € span(5). O

Theorem 1 (Replacement theorem). Suppose that V' is a vector space, that
S CV is a set of linearly independent vectors, and that T C V' is a generating
set of vectors. Then the cardinality of S is < the cardinality of T.

Proof. The strategy of the proof is to replace T with another spanning collection
of vectors T” having the same cardinality but containing S. We do this by
induction on the size of S.
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Choose an ordering on the elements of S. If S is infinite, this should
be a well-ordering. In the finite case, this means we can write S =

{vi,va,..., v }.

For each ¢ = 0,...,n, we will inductively define a set T; of vectors of V'
such that v; € T; for all j < ¢ and span(T;) = span(T’). We begin with
To=T.

Assume, by induction, that span(7;) = span(T) and vi,...,v; € T;.

By the exchange lemma, we can find a w € T — {vy,...,v;} such that
span((T; —{w})U{vi41}) = span(T;). Define Tj 1 = (T; —{w})U{vis1}.
O



