Logarithmic geometry, curves, and moduli Lectures at the Wise course

Dan Abramovich

Brown University

October 11, 2019

Abramovich (Brown)

Moduli of curves

 \mathcal{M}_g - a quasiprojective variety.

Image: A match a ma

- E

Moduli of curves

 \mathcal{M}_g - a quasiprojective variety.

Working with a non-complete moduli space is like keeping change in a pocket with holes

Angelo Vistoli

3

• \mathcal{M}_g

3

イロト イポト イヨト イヨト

• $\mathcal{M}_g \subset \overline{\mathcal{M}}_g$ - moduli of *stable* curves, a modular compactification.

A 🖓

3

M_g ⊂ *M_g* - moduli of *stable* curves, a modular compactification.
allow only nodes as singularities

3

- $\mathcal{M}_g \subset \overline{\mathcal{M}}_g$ moduli of *stable* curves, a modular compactification.
- allow only nodes as singularities
- What's so great about nodes?

- $\mathcal{M}_g \subset \overline{\mathcal{M}}_g$ moduli of *stable* curves, a modular compactification.
- allow only nodes as singularities
- What's so great about nodes?
- One answer: from the point of view of logarithmic geometry, these are the *logarithmically smooth* curves.

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{\alpha}{\to} \mathcal{O}_{\underline{X}})$$

3

伺下 イヨト イヨト

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{ o} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

3

・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{
ightarrow} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

• \underline{X} is a scheme - the underlying scheme

3

-

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{ o} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

- X is a scheme the underlying scheme
- *M* is a sheaf of monoids on *X*, and

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{
ightarrow} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

- <u>X</u> is a scheme the *underlying scheme*
- *M* is a sheaf of monoids on *X*, and
- α is a monoid homomorphism, where the monoid structure on $\mathcal{O}_{\underline{X}}$ is the multiplicative structure.

Definition

A pre logarithmic structure is

$$X = (\underline{X}, M \stackrel{lpha}{
ightarrow} \mathcal{O}_{\underline{X}})$$
 or just (\underline{X}, M)

such that

- <u>X</u> is a scheme the *underlying scheme*
- *M* is a sheaf of monoids on *X*, and
- α is a monoid homomorphism, where the monoid structure on $\mathcal{O}_{\underline{X}}$ is the multiplicative structure.

Definition

It is a *logarithmic structure* if $\alpha : \alpha^{-1}\mathcal{O}_X^* \to \mathcal{O}_X^*$ is an isomorphism.

• We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_X$ for X.

- We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_X$ for X.
- A monoid P is *integral* if $P \rightarrow P^{gp}$ is injective.

- We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_X$ for X.
- A monoid *P* is *integral* if $P \rightarrow P^{gp}$ is injective.
- It is saturated if integral and whenever p ∈ P^{gp} and m · p ∈ P for some integrer m > 0 then p ∈ P.

- We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_X$ for X.
- A monoid *P* is *integral* if $P \rightarrow P^{gp}$ is injective.
- It is saturated if integral and whenever p ∈ P^{gp} and m · p ∈ P for some integrer m > 0 then p ∈ P. I.e., not like {0,2,3,...}.

- We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_X$ for X.
- A monoid *P* is *integral* if $P \rightarrow P^{gp}$ is injective.
- It is saturated if integral and whenever p ∈ P^{gp} and m · p ∈ P for some integrer m > 0 then p ∈ P. I.e., not like {0,2,3,...}.
- We say that a logarithmic structure is *fine* if it is *coherent* with local charts $P_X \rightarrow \mathcal{O}_X$ with *P* integral.

- We say that (\underline{X}, M_X) is *coherent* if *étale locally* at every point there is a *finitely generated* monoid P and a local chart $P_X \to \mathcal{O}_X$ for X.
- A monoid *P* is *integral* if $P \rightarrow P^{gp}$ is injective.
- It is saturated if integral and whenever p ∈ P^{gp} and m · p ∈ P for some integrer m > 0 then p ∈ P. I.e., not like {0,2,3,...}.
- We say that a logarithmic structure is *fine* if it is *coherent* with local charts $P_X \rightarrow \mathcal{O}_X$ with *P* integral.
- We say that a logarithmic structure is *fine and saturated* (or fs) if it is coherent with local charts $P_X \rightarrow \mathcal{O}_X$ with *P* integral and saturated.

・聞き くほき くほき 二日

Definition

We define a morphism $X \rightarrow Y$ of *fine logarithmic schemes* to be *logarithmically smooth* if

3

イロト イポト イヨト イヨト

Definition

We define a morphism $X \rightarrow Y$ of *fine logarithmic schemes* to be *logarithmically smooth* if

 $1 \ \underline{X} \rightarrow \underline{Y}$ is locally of finite presentation,

3

()

Definition

We define a morphism $X \rightarrow Y$ of *fine logarithmic schemes* to be *logarithmically smooth* if

- $1 \ \underline{X} \rightarrow \underline{Y}$ is locally of finite presentation, and
- $2\,$ For $\,{\cal T}_0$ fine and affine and $\,{\cal T}_0 \subset \,{\cal T}$ strict square-0 embedding, given

there exists a lifting as indicated.

Definition

We define a morphism $X \rightarrow Y$ of *fine logarithmic schemes* to be *logarithmically smooth* if

- $1 \ \underline{X} \rightarrow \underline{Y}$ is locally of finite presentation, and
- 2 For T_0 fine and affine and $T_0 \subset T$ strict square-0 embedding, given

there exists a lifting as indicated.

The morphism is *logarithmically étale* if the lifting in (2) is unique.

Strict smooth morphisms

Lemma

If $X \to Y$ is strict and $\underline{X} \to \underline{Y}$ smooth then $X \to Y$ is logarithmically smooth.

3. 3

Strict smooth morphisms

Lemma

If $X \to Y$ is strict and $X \to Y$ smooth then $X \to Y$ is logarithmically smooth.

Proof.

There is a lifting

since $X \to Y$ smooth.

くほと くほと くほと

Strict smooth morphisms

Lemma

If $X \to Y$ is strict and $\underline{X} \to \underline{Y}$ smooth then $X \to Y$ is logarithmically smooth.

Proof.

There is a lifting

since $X \to Y$ smooth, and the lifting of morphism of monoids comes by the universal property of pullback.

通 ト イヨ ト イヨト

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism.

3

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism. Write $X = \text{Spec}(P \rightarrow R[P])$ and $Y = \text{Spec}(Q \rightarrow R[Q])$.

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism. Write $X = \text{Spec}(P \rightarrow R[P])$ and $Y = \text{Spec}(Q \rightarrow R[Q])$. Assume

• $\mathsf{Ker}(Q^{\mathrm{gp}} \to P^{\mathrm{gp}})$ is finite and with order invertible in R ,

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism. Write $X = \text{Spec}(P \rightarrow R[P])$ and $Y = \text{Spec}(Q \rightarrow R[Q])$. Assume

- $\mathsf{Ker}(Q^{\mathrm{gp}} o P^{\mathrm{gp}})$ is finite and with order invertible in R ,
- TorCoker $(Q^{\mathrm{gp}} \rightarrow P^{\mathrm{gp}})$ has order invertible in R.

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism. Write $X = \text{Spec}(P \rightarrow R[P])$ and $Y = \text{Spec}(Q \rightarrow R[Q])$. Assume

- $\mathsf{Ker}(Q^{\mathrm{gp}} o P^{\mathrm{gp}})$ is finite and with order invertible in R ,
- TorCoker $(Q^{\mathrm{gp}} \rightarrow P^{\mathrm{gp}})$ has order invertible in R.

Then $X \rightarrow Y$ is logarithmically smooth.

Proposition

Say P, Q are finitely generated integral monoids, R a ring, $Q \rightarrow P$ a monoid homomorphism. Write $X = \text{Spec}(P \rightarrow R[P])$ and $Y = \text{Spec}(Q \rightarrow R[Q])$. Assume

- $\mathsf{Ker}(Q^{\mathrm{gp}} o P^{\mathrm{gp}})$ is finite and with order invertible in R ,
- TorCoker $(Q^{\text{gp}} \rightarrow P^{\text{gp}})$ has order invertible in R.

Then $X \rightarrow Y$ is logarithmically smooth. If also the cokernel is finite then $X \rightarrow Y$ is logarithmically étale.

通 ト イヨ ト イヨト

Characterization of logarithmic smoothness

Theorem (K. Kato)

X, Y fine, $Q_Y \rightarrow M_Y$ a chart.

3

Characterization of logarithmic smoothness

Theorem (K. Kato)

X, Y fine, $Q_Y \rightarrow M_Y$ a chart. Then $X \rightarrow Y$ is logarithmically smooth iff there are extensions to local charts

$$(P_X \rightarrow M_X, Q_Y \rightarrow M_Y, Q \rightarrow P)$$

for $X \to Y$ such that

Characterization of logarithmic smoothness

Theorem (K. Kato)

X, Y fine, $Q_Y \to M_Y$ a chart. Then $X \to Y$ is logarithmically smooth iff there are extensions to local charts

$$(P_X \rightarrow M_X, Q_Y \rightarrow M_Y, Q \rightarrow P)$$

for $X \to Y$ such that

• $Q \rightarrow P$ combinatorially smooth,
Characterization of logarithmic smoothness

Theorem (K. Kato)

X, Y fine, $Q_Y \to M_Y$ a chart. Then $X \to Y$ is logarithmically smooth iff there are extensions to local charts

$$(P_X \rightarrow M_X, Q_Y \rightarrow M_Y, Q \rightarrow P)$$

for $X \to Y$ such that

- $Q \rightarrow P$ combinatorially smooth, and
- $\underline{X} \to \underline{Y} \times_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P]$ is smooth

Characterization of logarithmic smoothness

Theorem (K. Kato)

X, Y fine, $Q_Y \to M_Y$ a chart. Then $X \to Y$ is logarithmically smooth iff there are extensions to local charts

$$(P_X \rightarrow M_X, Q_Y \rightarrow M_Y, Q \rightarrow P)$$

for $X \to Y$ such that

•
$$Q
ightarrow P$$
 combinatorially smooth, and

•
$$\underline{X} o \underline{Y} imes_{\operatorname{Spec} \mathbb{Z}[Q]} \operatorname{Spec} \mathbb{Z}[P]$$
 is smooth

One direction:

3

過 ト イヨ ト イヨト

Definition

A log curve is a morphism $f: X \to S$ of fs logarithmic schemes satisfying:

A 1

3

Definition

A *log curve* is a morphism $f : X \rightarrow S$ of fs logarithmic schemes satisfying:

• f is logarithmically smooth,

3

Definition

A log curve is a morphism $f: X \to S$ of fs logarithmic schemes satisfying:

- f is logarithmically smooth,
- f is integral, i.e. flat,

Definition

A log curve is a morphism $f : X \to S$ of fs logarithmic schemes satisfying:

- f is logarithmically smooth,
- f is integral, i.e. flat,
- f is saturated, i.e. has reduced fibers, and

Definition

A log curve is a morphism $f : X \to S$ of fs logarithmic schemes satisfying:

- f is logarithmically smooth,
- f is integral, i.e. flat,
- f is saturated, i.e. has reduced fibers, and
- the fibers are curves i.e. pure dimension 1 schemes.

Assume $\pi: X \to S$ is a log curve.

- 2

イロン イヨン イヨン イヨン

Assume $\pi: X \to S$ is a log curve. Then

• Fibers have at most nodes as singularities

3

- 4 同 6 4 日 6 4 日 6

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i : \underline{S} \to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i : \underline{S} \to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that

Away from s_i we have that $X^0 = \underline{X}_0 \times \underline{S} S_i$, so π is strict away from s_i

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i : \underline{S} \to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that

Away from s_i we have that $X^0 = \underline{X}_0 imes_{\underline{S}} S$, so π is strict away from s_i

Near each s_i we have a strict étale

$$X^0 o S imes \mathbb{A}^1$$

with the standard divisorial logarithmic structure on \mathbb{A}^1 .

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i : \underline{S} \to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that

Away from s_i we have that $X^0 = X_0 \times \underline{S} S$, so π is strict away from s_i

Near each s_i we have a strict étale

$$X^0 \to S \times \mathbb{A}^1$$

with the standard divisorial logarithmic structure on \mathbb{A}^1 . étale locally at a node xy = f the log curve X is the pullback of

$$\mathsf{Spec}(\mathbb{N}^2 \to \mathbb{Z}[\mathbb{N}^2]) \to \mathsf{Spec}(\mathbb{N} \to \mathbb{Z}[\mathbb{N}])$$

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i : \underline{S} \to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that

Away from s_i we have that $X^0 = \underline{X}_0 \times \underline{S}$, so π is strict away from s_i

Near each s_i we have a strict étale

$$X^0 \to S \times \mathbb{A}^1$$

with the standard divisorial logarithmic structure on A¹.
étale locally at a node xy = f the log curve X is the pullback of

$$\mathsf{Spec}(\mathbb{N}^2 \to \mathbb{Z}[\mathbb{N}^2]) \to \mathsf{Spec}(\mathbb{N} \to \mathbb{Z}[\mathbb{N}])$$

where $\mathbb{N} \to \mathbb{N}^2$ is the diagonal.

Assume $\pi: X \to S$ is a log curve. Then

- Fibers have at most nodes as singularities
- étale locally on S we can choose disjoint sections $s_i : \underline{S} \to \underline{X}$ in the nonsingular locus \underline{X}_0 of $\underline{X}/\underline{S}$ such that

Away from s_i we have that $X^0 = \underline{X}_0 \times \underline{S} S$, so π is strict away from s_i

Near each s_i we have a strict étale

$$X^0 \to S \times \mathbb{A}^1$$

with the standard divisorial logarithmic structure on \mathbb{A}^1 . • étale locally at a node xy = f the log curve X is the pullback of

$$\mathsf{Spec}(\mathbb{N}^2 \to \mathbb{Z}[\mathbb{N}^2]) \to \mathsf{Spec}(\mathbb{N} \to \mathbb{Z}[\mathbb{N}])$$

where $\mathbb{N} \to \mathbb{N}^2$ is the diagonal. Here the image of $1 \in \mathbb{N}$ in \mathcal{O}_S is f and the generators of \mathbb{N}^2 map to x and y.

イロト 不得下 イヨト イヨト

Definition

A stable log curve $X \rightarrow S$ is:

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

- A stable log curve $X \rightarrow S$ is:
 - a log curve $X \to S$,

3

- ∢ ≣ →

▲ 同 ▶ → 三 ▶

Definition

- A stable log curve $X \rightarrow S$ is:
 - a log curve $X \to S$,
 - sections $s_i : \underline{S} \to \underline{X}$ for $i = 1, \ldots, n$,

3

- 4 ⊒ →

A 🖓 h

Definition

- A stable log curve $X \rightarrow S$ is:
 - a log curve $X \to S$,
 - sections $s_i : \underline{S} \to \underline{X}$ for $i = 1, \ldots, n$,

such that

•
$$(\underline{X} \rightarrow \underline{S}, s_i)$$
 is stable,

3

- 4 ⊒ →

A 🖓 h

Definition

- A stable log curve $X \rightarrow S$ is:
 - a log curve $X \to S$,
 - sections $s_i : \underline{S} \to \underline{X}$ for $i = 1, \ldots, n$,

such that

- $(\underline{X} \rightarrow \underline{S}, s_i)$ is stable,
- the log structure is strict away from sections and singularities of fibers, and "divisorial along the sections".

Definition

- A stable log curve $X \rightarrow S$ is:
 - a log curve $X \to S$,
 - sections $s_i : \underline{S} \to \underline{X}$ for $i = 1, \ldots, n$,

such that

- $(\underline{X} \rightarrow \underline{S}, s_i)$ is stable,
- the log structure is strict away from sections and singularities of fibers, and "divisorial along the sections".

Moduli of stable log curves

We define a category $\overline{\mathcal{M}}_{g,n}^{\log}$ of stable log curves: objects are log (g, n)-curves $X \to S$ and arrows are fiber diagrams compatible with sections

Moduli of stable log curves

We define a category $\overline{\mathcal{M}}_{g,n}^{\log}$ of stable log curves: objects are log (g, n)-curves $X \to S$ and arrows are fiber diagrams compatible with sections

There is a forgetful functor

$$egin{array}{ccc} \overline{\mathcal{M}}_{g,n}^{\log} & \longrightarrow & \mathfrak{LogSch}^{\mathsf{fs}} \ (X o S) & \mapsto & S. \end{array}$$

So $\overline{\mathcal{M}}_{g,n}^{\log}$ is a category fibered in groupoids over $\mathfrak{LogSch}^{\mathrm{fs}}$.

We also have a forgetful functor

$$\begin{array}{rccc} \overline{\mathcal{M}}_{g,n}^{\log} & \longrightarrow & \overline{\mathcal{M}}_{g,n} \\ (X \to S) & \mapsto & (\underline{X} \to \underline{S}) \end{array}$$

___ ▶

3

We also have a forgetful functor

$$\begin{array}{rccc} \overline{\mathcal{M}}_{g,n}^{\log} & \longrightarrow & \overline{\mathcal{M}}_{g,n} \\ (X \to S) & \mapsto & (\underline{X} \to \underline{S}) \end{array}$$

Note that the Deligne–Knudsen–Mumford moduli stack $\overline{\mathcal{M}}_{g,n}$ has a natural logarithmic smooth structure $M_{\Delta_{g,n}}$ given by the boundary divisor.

We also have a forgetful functor

$$\begin{array}{rccc} \overline{\mathcal{M}}_{g,n}^{\log} & \longrightarrow & \overline{\mathcal{M}}_{g,n} \\ (X \to S) & \mapsto & (\underline{X} \to \underline{S}) \end{array}$$

Note that the Deligne-Knudsen-Mumford moduli stack $\overline{\mathcal{M}}_{g,n}$ has a natural logarithmic smooth structure $M_{\Delta_{g,n}}$ given by the boundary divisor. As such it represents a category fibered in groupoids $(\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}})$ over \mathfrak{LogGch}^{fs} .

We also have a forgetful functor

$$\begin{array}{rccc} \overline{\mathcal{M}}_{g,n}^{\mathsf{log}} & \longrightarrow & \overline{\mathcal{M}}_{g,n} \\ (X \to S) & \mapsto & (\underline{X} \to \underline{S}) \end{array}$$

Note that the Deligne-Knudsen-Mumford moduli stack $\overline{\mathcal{M}}_{g,n}$ has a natural logarithmic smooth structure $M_{\Delta_{g,n}}$ given by the boundary divisor. As such it represents a category fibered in groupoids $(\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}})$ over \mathfrak{LogGch}^{fs} .

Theorem (F. Kato)

$$\overline{\mathcal{M}}_{g,n}^{\log} \simeq (\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}}).$$

We also have a forgetful functor

$$\begin{array}{rccc} \overline{\mathcal{M}}_{g,n}^{\mathsf{log}} & \longrightarrow & \overline{\mathcal{M}}_{g,n} \\ (X \to S) & \mapsto & (\underline{X} \to \underline{S}) \end{array}$$

Note that the Deligne-Knudsen-Mumford moduli stack $\overline{\mathcal{M}}_{g,n}$ has a natural logarithmic smooth structure $M_{\Delta_{g,n}}$ given by the boundary divisor. As such it represents a category fibered in groupoids $(\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}})$ over \mathfrak{LogGch}^{fs} .

Theorem (F. Kato)

$$\overline{\mathcal{M}}_{g,n}^{\log} \simeq (\overline{\mathcal{M}}_{g,n}, M_{\Delta_{g,n}}).$$

Minimality

Given a stable curve $\underline{X} \rightarrow \underline{S}$ we define

$$X^{\min} = \underline{X} imes_{\overline{\mathcal{M}}_{g,n+1}} \overline{\mathcal{M}}_{g,n+1}^{\log}$$
 and $S^{\min} = \underline{S} imes_{\overline{\mathcal{M}}_{g,n}} \overline{\mathcal{M}}_{g,n}^{\log}$

3

∃ ► < ∃ ►</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Minimality

Given a stable curve $\underline{X} \rightarrow \underline{S}$ we define

$$X^{\mathsf{min}} = \underline{X} imes_{\overline{\mathcal{M}}_{g,n+1}} \overline{\mathcal{M}}_{g,n+1}^{\mathsf{log}} \qquad \mathsf{and} \qquad S^{\mathsf{min}} = \underline{S} imes_{\overline{\mathcal{M}}_{g,n}} \overline{\mathcal{M}}_{g,n}^{\mathsf{log}}.$$

The logarithmic structures $X^{\min} \rightarrow S^{\min}$ are called the *minimal* or *basic* logarithmic structures on a log curve.

Minimality

Given a stable curve $\underline{X} \rightarrow \underline{S}$ we define

$$X^{\mathsf{min}} = \underline{X} imes_{\overline{\mathcal{M}}_{g,n+1}} \overline{\mathcal{M}}_{g,n+1}^{\mathsf{log}} \qquad \mathsf{and} \qquad S^{\mathsf{min}} = \underline{S} imes_{\overline{\mathcal{M}}_{g,n}} \overline{\mathcal{M}}_{g,n}^{\mathsf{log}}.$$

The logarithmic structures $X^{\min} \rightarrow S^{\min}$ are called the *minimal* or *basic* logarithmic structures on a log curve. We write

$$S^{\min} = (\underline{S}, M_{X/S}^S)$$
 and $X^{\min} = (\underline{X}, M_{X/S}^X).$

Fundamental diagram

A 🖓 h

3

16 / 17

Fundamental diagram

• $\overline{\mathcal{M}}_{g,n}^{\log}$ parametrizes stable log curves over $\mathfrak{LogGch}^{\mathsf{fs}}$

Fundamental diagram

- $\overline{\mathcal{M}}_{g,n}^{\log}$ parametrizes stable log curves over $\mathfrak{LogGch}^{\mathsf{fs}}$
- $\overline{\mathcal{M}}_{g,n}$ parametrizes minimal stable log curves over \mathfrak{Sch} .

16 / 17

Tropical interpretation

Given a log curve X over an \mathbb{N} -point we have adual graph with

Tropical interpretation

Given a log curve X over an \mathbb{N} -point we have adual graph with • vertices v_i corresponding to components
Tropical interpretation

Given a log curve X over an \mathbb{N} -point we have adual graph with

- vertices v_i corresponding to components
- edges *e_j* corresponding to nodes.

Tropical interpretation

Given a log curve X over an $\mathbb N\text{-point}$ we have adual graph with

- vertices v_i corresponding to components
- edges *e_j* corresponding to nodes.

this means

Observation

The minimal object exists, with characteristic sheaf dual to the lattice in the corresponding space of tropical curves.