Problem Set #5 Math 2135 Spring 2020 Due Friday, April 17

1. There is a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that the vectors

$$\mathbf{x}^{1} = \begin{pmatrix} 3\\1\\-1 \end{pmatrix} \qquad \mathbf{x}^{2} = \begin{pmatrix} -2\\0\\1 \end{pmatrix} \qquad \mathbf{x}^{3} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

are eigenvectors with the following eigenvalues:

$$\lambda_1 = 7$$
 $\lambda_2 = -1$ $\lambda_3 = 5$

Compute $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ (in the standard basis).

Solution. We have

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} = -\frac{1}{2}\mathbf{x}^1 - \mathbf{x}^2 + \frac{1}{2}\mathbf{x}^3$$

 \mathbf{SO}

$$T\begin{pmatrix}1\\0\\0\end{pmatrix} = -\frac{1}{2}T(\mathbf{x}^1) - T(\mathbf{x}^2) + \frac{1}{2}T(\mathbf{x}^3)$$
$$= -\frac{7}{2}\mathbf{x}^1 + \mathbf{x}^2 + \frac{5}{2}\mathbf{x}^3$$
$$= \begin{pmatrix}-10\\-1\\7\end{pmatrix}$$

2. Let P_n be the vector space of polynomials of degree $\leq n$ and let $T: P_n \to P_n$ be the linear transformation T(p)(x) = xp'(x). Find all eigenvalues and eigenvectors of T.

Solution. We wish to solve $xp' = \lambda p$ for λ and p. If $p = a_n x^n + a_{n-1} x^{n-1} + \cdots$ then $xp' = na_n x^n + (n-1)a_{n-1}x^{n-1} + \cdots$. Setting this equal to λp , we get $ma_m = \lambda a_m$ for all m. Therefore λ can be $0, 1, \ldots, n$ and the λ -eigenspace is spanned by x^{λ} . \Box

3. Define a sequence by the following recursive formula:

$$X_0 = 0$$

 $X_1 = 1$
 $X_n = 6X_{n-1} - 9X_{n-2}$ for $n \ge 2$.

Compute X_{2020} . Make sure to justify your answer with a proof! (Hint: the method we used for the Fibonacci numbers will not work exactly the same way here, but it will get you started. Look for a basis of generalized eigenvectors instead of a basis of eigenvectors.)

Solution. We have

$$\begin{pmatrix} X_{n+1} \\ X_n \end{pmatrix} = \begin{pmatrix} 6 & -9 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} X_n \\ X_{n-1} \end{pmatrix} = \begin{pmatrix} 6 & -9 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

The characteristic polynomial of $A = \begin{pmatrix} 6 & -9 \\ 1 & 0 \end{pmatrix}$ is $\lambda^2 - 6\lambda + 9 = (\lambda - 3)^2$. Therefore 3 is the only eigenvalue. The 3-eigenspace is

$$\ker \begin{pmatrix} 6-3 & -9\\ 1 & -3 \end{pmatrix} = \ker \begin{pmatrix} 1 & -3\\ 0 & 0 \end{pmatrix} = \operatorname{span} \begin{pmatrix} 3\\ 1 \end{pmatrix}$$

We have $A\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}6\\1\end{pmatrix} = 3\begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}3\\1\end{pmatrix}$. In the basis $U = (\mathbf{u}^1 \ \mathbf{u}^2)$ consisting of $\mathbf{u}^1 = \begin{pmatrix}3\\1\end{pmatrix}$ and $\mathbf{u}^2 = \begin{pmatrix}1\\0\end{pmatrix}$ we therefore have

$$B = [A]_U^U = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}.$$

Then we can compute
$$B^n = \begin{pmatrix} 3^n & 3^{n-1}n \\ 0 & 3^n \end{pmatrix}$$
. Therefore $A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3^{n-1}n \begin{pmatrix} 3 \\ 1 \end{pmatrix} + 3^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3^n(n+1) \\ 3^{n-1}n \end{pmatrix}$ and $X_n = 3^{n-1}n$.

- 4. Suppose that $T: V \to V$ is a linear transformation, that λ and μ are distinct real numbers, and that m and n are positive integers. Suppose that \mathbf{v} is a vector in V such that $(T \lambda I)^n(\mathbf{v}) = \mathbf{0}$ and $(T \mu I)^m(\mathbf{v}) = \mathbf{0}$. Prove that $\mathbf{v} = \mathbf{0}$. You may wish to use the following steps:
 - (a) Prove the assertion when m = 1.

Solution. When m = 1 we have $T(\mathbf{v}) = \mu \mathbf{v}$. Therefore $(T - \lambda I)(\mathbf{v}) = \mu v - \lambda v = (\mu - \lambda)v$. But then $(T - \lambda I)^n(\mathbf{v}) = (\mu - \lambda)^n \mathbf{v}$. Therefore $(\mu - \lambda)^n \mathbf{v} = (T - \lambda I)^n \mathbf{v} = \mathbf{0}$. \Box

(b) Prove that $(T - \lambda I) \circ (T - \mu I) = (T - \mu I) \circ (T - \lambda I)$. Solution. We have $(T - \lambda I)(T - \mu I) = T^2 - (\lambda + \mu)T + \lambda \mu I = T^2 - (\mu + \lambda)T + \mu \lambda I = (T - \mu I)(T - \lambda I).$

(c) If
$$m > 1$$
, let $\mathbf{w} = (T - \mu I)^{m-1}(\mathbf{v})$. Show that $(T - \lambda I)^n(\mathbf{w}) = \mathbf{0}$.

Solution. Using the previous part, $(T - \lambda I)^n (T - \mu I)^{m-1} = (T - \mu I)^{m-1} (T - \lambda I)^n$. Therefore:

$$(T - \lambda I)^{n} \mathbf{w} = (T - \lambda I)^{n} (T - \mu I)^{m-1} \mathbf{v}$$
$$= (T - \mu I)^{m-1} (T - \lambda I)^{n} \mathbf{v}$$
$$= (T - \mu I)^{m-1} \mathbf{0}$$
$$= \mathbf{0}$$

(d) Use induction and the previous parts of the problem to prove that $\mathbf{v} = \mathbf{0}$.

Solution. The base case is m = 1, which was covered in part (a). For the inductive step assume that, for all vectors \mathbf{u} , if $(T - \lambda I)^n \mathbf{u} = (T - \mu I)^{m-1} \mathbf{u} = \mathbf{0}$ then $\mathbf{u} = \mathbf{0}$. Let $\mathbf{w} = (T - \mu I)^{m-1} \mathbf{v}$. Then we have

$$(T - \mu I)\mathbf{w} = (T - \mu I)^m \mathbf{v} = \mathbf{0}$$

(T - \lambda I)\mathbf{w} = \mathbf{0} by part (c).

By part (a), this means that $\mathbf{w} = \mathbf{0}$. Therefore we have $(T - \lambda I)^n \mathbf{v} = (T - \mu I)^{m-1} \mathbf{v} = \mathbf{0}$, so by induction, $\mathbf{v} = \mathbf{0}$, as desired.