Problem Set \#5

Math 2135 Spring 2020

Due Friday, April 17

1. There is a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that the vectors

$$
\mathrm{x}^{1}=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right) \quad \mathrm{x}^{2}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \quad \mathrm{x}^{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

are eigenvectors with the following eigenvalues:

$$
\lambda_{1}=7 \quad \lambda_{2}=-1 \quad \lambda_{3}=5
$$

Compute $T\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ (in the standard basis).
Solution. We have

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=-\frac{1}{2} \mathbf{x}^{1}-\mathbf{x}^{2}+\frac{1}{2} \mathbf{x}^{3}
$$

so

$$
\begin{aligned}
T\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) & =-\frac{1}{2} T\left(\mathbf{x}^{1}\right)-T\left(\mathbf{x}^{2}\right)+\frac{1}{2} T\left(\mathbf{x}^{3}\right) \\
& =-\frac{7}{2} \mathbf{x}^{1}+\mathbf{x}^{2}+\frac{5}{2} \mathbf{x}^{3} \\
& =\left(\begin{array}{c}
-10 \\
-1 \\
7
\end{array}\right)
\end{aligned}
$$

2. Let P_{n} be the vector space of polynomials of degree $\leq n$ and let $T: P_{n} \rightarrow P_{n}$ be the linear transformation $T(p)(x)=x p^{\prime}(x)$. Find all eigenvalues and eigenvectors of T.

Solution. We wish to solve $x p^{\prime}=\lambda p$ for λ and p. If $p=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots$ then $x p^{\prime}=n a_{n} x^{n}+(n-1) a_{n-1} x^{n-1}+\cdots$. Setting this equal to λp, we get $m a_{m}=\lambda a_{m}$ for all m. Therefore λ can be $0,1, \ldots, n$ and the λ-eigenspace is spanned by x^{λ}.
3. Define a sequence by the following recursive formula:

$$
\begin{aligned}
& X_{0}=0 \\
& X_{1}=1 \\
& X_{n}=6 X_{n-1}-9 X_{n-2} \quad \text { for } n \geq 2
\end{aligned}
$$

Compute X_{2020}. Make sure to justify your answer with a proof! (Hint: the method we used for the Fibonacci numbers will not work exactly the same way here, but it will get you started. Look for a basis of generalized eigenvectors instead of a basis of eigenvectors.)

Solution. We have

$$
\binom{X_{n+1}}{X_{n}}=\left(\begin{array}{cc}
6 & -9 \\
1 & 0
\end{array}\right)\binom{X_{n}}{X_{n-1}}=\left(\begin{array}{cc}
6 & -9 \\
1 & 0
\end{array}\right)^{n}\binom{1}{0}
$$

The characteristic polynomial of $A=\left(\begin{array}{cc}6 & -9 \\ 1 & 0\end{array}\right)$ is $\lambda^{2}-6 \lambda+9=(\lambda-3)^{2}$. Therefore 3 is the only eigenvalue. The 3 -eigenspace is

$$
\operatorname{ker}\left(\begin{array}{cc}
6-3 & -9 \\
1 & -3
\end{array}\right)=\operatorname{ker}\left(\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right)=\operatorname{span}\binom{3}{1}
$$

We have $A\binom{1}{0}=\binom{6}{1}=3\binom{1}{0}+\binom{3}{1}$. In the basis $U=\left(\begin{array}{ll}\mathbf{u}^{1} & \mathbf{u}^{2}\end{array}\right)$ consisting of $\mathbf{u}^{1}=\binom{3}{1}$ and $\mathbf{u}^{2}=\binom{1}{0}$ we therefore have

$$
B=[A]_{U}^{U}=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right)
$$

Then we can compute $B^{n}=\left(\begin{array}{cc}3^{n} & 3^{n-1} n \\ 0 & 3^{n}\end{array}\right)$. Therefore $A^{n}\binom{1}{0}=3^{n-1} n\binom{3}{1}+3^{n}\binom{1}{0}=$ $\binom{3^{n}(n+1)}{3^{n-1} n}$ and $X_{n}=3^{n-1} n$.
4. Suppose that $T: V \rightarrow V$ is a linear transformation, that λ and μ are distinct real numbers, and that m and n are positive integers. Suppose that \mathbf{v} is a vector in V such that $(T-\lambda I)^{n}(\mathbf{v})=\mathbf{0}$ and $(T-\mu I)^{m}(\mathbf{v})=\mathbf{0}$. Prove that $\mathbf{v}=\mathbf{0}$. You may wish to use the following steps:
(a) Prove the assertion when $m=1$.

Solution. When $m=1$ we have $T(\mathbf{v})=\mu \mathbf{v}$. Therefore $(T-\lambda I)(\mathbf{v})=\mu v-\lambda v=$ $(\mu-\lambda) v$. But then $(T-\lambda I)^{n}(\mathbf{v})=(\mu-\lambda)^{n} \mathbf{v}$. Therefore $(\mu-\lambda)^{n} \mathbf{v}=(T-\lambda I)^{n} \mathbf{v}=$ $\mathbf{0}$. As $\mu-\lambda \neq 0$, this implies $\mathbf{v}=\mathbf{0}$.
(b) Prove that $(T-\lambda I) \circ(T-\mu I)=(T-\mu I) \circ(T-\lambda I)$.

Solution. We have
$(T-\lambda I)(T-\mu I)=T^{2}-(\lambda+\mu) T+\lambda \mu I=T^{2}-(\mu+\lambda) T+\mu \lambda I=(T-\mu I)(T-\lambda I)$.
(c) If $m>1$, let $\mathbf{w}=(T-\mu I)^{m-1}(\mathbf{v})$. Show that $(T-\lambda I)^{n}(\mathbf{w})=\mathbf{0}$.

Solution. Using the previous part, $(T-\lambda I)^{n}(T-\mu I)^{m-1}=(T-\mu I)^{m-1}(T-\lambda I)^{n}$. Therefore:

$$
\begin{aligned}
(T-\lambda I)^{n} \mathbf{w} & =(T-\lambda I)^{n}(T-\mu I)^{m-1} \mathbf{v} \\
& =(T-\mu I)^{m-1}(T-\lambda I)^{n} \mathbf{v} \\
& =(T-\mu I)^{m-1} \mathbf{0} \\
& =\mathbf{0}
\end{aligned}
$$

(d) Use induction and the previous parts of the problem to prove that $\mathbf{v}=\mathbf{0}$.

Solution. The base case is $m=1$, which was covered in part (a). For the inductive step assume that, for all vectors \mathbf{u}, if $(T-\lambda I)^{n} \mathbf{u}=(T-\mu I)^{m-1} \mathbf{u}=\mathbf{0}$ then $\mathbf{u}=\mathbf{0}$. Let $\mathbf{w}=(T-\mu I)^{m-1} \mathbf{v}$. Then we have

$$
\begin{aligned}
& (T-\mu I) \mathbf{w}=(T-\mu I)^{m} \mathbf{v}=\mathbf{0} \\
& (T-\lambda I) \mathbf{w}=\mathbf{0} \quad \text { by part }(\mathrm{c})
\end{aligned}
$$

By part (a), this means that $\mathbf{w}=\mathbf{0}$. Therefore we have $(T-\lambda I)^{n} \mathbf{v}=(T-$ $\mu I)^{m-1} \mathbf{v}=\mathbf{0}$, so by induction, $\mathbf{v}=\mathbf{0}$, as desired.

