Problem Set \#5

Math 2135 Spring 2020
Due Friday, April 17

1. There is a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that the vectors

$$
\mathrm{x}^{1}=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right) \quad \mathrm{x}^{2}=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \quad \mathrm{x}^{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

are eigenvectors with the following eigenvalues:

$$
\lambda_{1}=7 \quad \lambda_{2}=-1 \quad \lambda_{3}=5
$$

Compute $T\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ (in the standard basis).
2. Let P_{n} be the vector space of polynomials of degree $\leq n$ and let $T: P_{n} \rightarrow P_{n}$ be the linear transformation $T(p)(x)=x p^{\prime}(x)$. Find all eigenvalues and eigenvectors of T.
3. Define a sequence by the following recursive formula:

$$
\begin{aligned}
& X_{0}=0 \\
& X_{1}=1 \\
& X_{n}=6 X_{n-1}-9 X_{n-2} \quad \text { for } n \geq 2
\end{aligned}
$$

Compute X_{2020}. Make sure to justify your answer with a proof! (Hint: the method we used for the Fibonacci numbers will not work exactly the same way here, but it will get you started. Look for a basis of generalized eigenvectors instead of a basis of eigenvectors.)
4. Suppose that $T: V \rightarrow V$ is a linear transformation, that λ and μ are distinct real numbers, and that m and n are positive integers. Suppose that \mathbf{v} is a vector in V such that $(T-\lambda I)^{n}(\mathbf{v})=\mathbf{0}$ and $(T-\mu I)^{m}(\mathbf{v})=\mathbf{0}$. Prove that $\mathbf{v}=\mathbf{0}$. You may wish to use the following steps:
(a) Prove the assertion when $m=1$.
(b) Prove that $(T-\lambda I) \circ(T-\mu I)=(T-\mu I) \circ(T-\lambda I)$.
(c) If $m>1$, let $\mathbf{w}=(T-\mu I)^{m-1}(\mathbf{v})$. Show that $(T-\lambda I)^{n}(\mathbf{w})=\mathbf{0}$.
(d) Use induction and the previous parts of the problem to prove that $\mathbf{v}=\mathbf{0}$.

