Problem Set #5 Math 2135 Spring 2020 Due Friday, April 17

1. There is a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that the vectors

$$\mathbf{x}^{1} = \begin{pmatrix} 3\\1\\-1 \end{pmatrix} \qquad \mathbf{x}^{2} = \begin{pmatrix} -2\\0\\1 \end{pmatrix} \qquad \mathbf{x}^{3} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

are eigenvectors with the following eigenvalues:

$$\lambda_1 = 7 \qquad \lambda_2 = -1 \qquad \lambda_3 = 5$$

Compute $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ (in the standard basis).

- 2. Let P_n be the vector space of polynomials of degree $\leq n$ and let $T: P_n \to P_n$ be the linear transformation T(p)(x) = xp'(x). Find all eigenvalues and eigenvectors of T.
- 3. Define a sequence by the following recursive formula:

$$X_0 = 0$$

 $X_1 = 1$
 $X_n = 6X_{n-1} - 9X_{n-2}$ for $n \ge 2$.

Compute X_{2020} . Make sure to justify your answer with a proof! (Hint: the method we used for the Fibonacci numbers will not work exactly the same way here, but it will get you started. Look for a basis of generalized eigenvectors instead of a basis of eigenvectors.)

- 4. Suppose that $T: V \to V$ is a linear transformation, that λ and μ are distinct real numbers, and that m and n are positive integers. Suppose that \mathbf{v} is a vector in V such that $(T \lambda I)^n(\mathbf{v}) = \mathbf{0}$ and $(T \mu I)^m(\mathbf{v}) = \mathbf{0}$. Prove that $\mathbf{v} = \mathbf{0}$. You may wish to use the following steps:
 - (a) Prove the assertion when m = 1.
 - (b) Prove that $(T \lambda I) \circ (T \mu I) = (T \mu I) \circ (T \lambda I)$.
 - (c) If m > 1, let $\mathbf{w} = (T \mu I)^{m-1}(\mathbf{v})$. Show that $(T \lambda I)^n(\mathbf{w}) = \mathbf{0}$.
 - (d) Use induction and the previous parts of the problem to prove that $\mathbf{v} = \mathbf{0}$.