Problem Set \#4

Math 2135 Spring 2020
Due Friday, April 17

1. Consider the following matrix:

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & 2 \\
1 & 1 & t
\end{array}\right)
$$

(a) Find the inverse of A when $t=1$.

Solution.

$$
\begin{aligned}
& \operatorname{rref}\left(\begin{array}{ccc|ccc}
2 & 1 & -1 & 1 & 0 & 0 \\
-4 & -3 & 2 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
& =\operatorname{rref}\left(\begin{array}{ccc|ccc}
0 & -1 & -3 & 1 & 0 & -2 \\
0 & 1 & 6 & 0 & 1 & 4 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
& =\operatorname{rref}\left(\begin{array}{ccc|ccc}
0 & -1 & -3 & 1 & 0 & -2 \\
0 & 0 & 3 & 1 & 1 & 2 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
& =\operatorname{rref}\left(\begin{array}{ccc|ccc}
0 & -1 & 0 & 2 & 1 & 0 \\
0 & 0 & 3 & 1 & 1 & 2 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \\
& =\operatorname{rref}\left(\begin{array}{ccc|ccc}
0 & -1 & 0 & 2 & 1 & 0 \\
0 & 0 & 3 & 1 & 1 & 2 \\
1 & 0 & 1 & 2 & 1 & 1
\end{array}\right) \\
& =\operatorname{rref}\left(\begin{array}{ccc|ccc}
0 & -1 & 0 & 2 & 1 & 0 \\
0 & 0 & 3 & 1 & 1 & 2 \\
1 & 0 & 0 & 5 / 3 & 2 / 3 & 1 / 3
\end{array}\right) \\
& =\operatorname{rref}\left(\begin{array}{ccc|ccc}
0 & 1 & 0 & -2 & -1 & 0 \\
0 & 0 & 1 & 1 / 3 & 1 / 3 & 2 / 3 \\
1 & 0 & 0 & 5 / 3 & 2 / 3 & 1 / 3
\end{array}\right) \\
& =\operatorname{rref}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 5 / 3 & 2 / 3 & 1 / 3 \\
0 & 1 & 0 & -2 & -1 & 0 \\
0 & 0 & 1 & 1 / 3 & 1 / 3 & 2 / 3
\end{array}\right)
\end{aligned}
$$

(b) Find all values of t such that A in invertible. Explain how you know that A is invertible for those values of t, and how you know it is not invertible for all other values.

Solution. We compute the determinant:

$$
\operatorname{det}(A)=t(-6+4)-1(4-4)+1(2-3)=-2 t-1
$$

We have an inverse if and only if $\operatorname{det}(A) \neq 0$, and this occurs if and only if t is not $-\frac{1}{2}$.
(c) For what values of t does the inverse of A have integer entries?

Solution. If C is the cofactor matrix of A then $A^{-1}=\operatorname{det}(A)^{-1} C^{T}$, so A has an inverse with integer entries if and only if $\operatorname{det}(A)= \pm 1$. This occurs if and only if $t=0$ or $t=-1$.
2. In this question, we will study an unknown 4×5 matrix, A. We will write \mathbf{u}^{i} for the columns of A and \mathbf{v}_{j} for the rows of A :

$$
A=\left(\begin{array}{lllll}
\mathbf{u}^{1} & \mathbf{u}^{2} & \mathbf{u}^{3} & \mathbf{u}^{4} & \mathbf{u}^{5}
\end{array}\right)
$$

While we do not know what A is, we do know its reduced row echelon form:

$$
\operatorname{rref}(A)=\left(\begin{array}{ccccc}
1 & 0 & 3 & 0 & -5 \\
0 & 1 & -1 & 0 & 6 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Answer the following questions using the matrix $\operatorname{rref}(A)$, above, and the column vectors $\mathbf{u}^{1}, \ldots, \mathbf{u}^{5}$. Justify your answers, briefly, and remember that $A \neq \operatorname{rref}(A)$.
(a) What is $\operatorname{rank}(A)$?

Solution. The rank is equal to the number of pivots in $\operatorname{rref}(A)$, which is 3 .
(b) Find a basis for $\operatorname{null}(A)$, the null space of A.

Solution. The following vectors form a basis for $\operatorname{null}(A)=\operatorname{null}(\operatorname{rref}(A))$:

$$
\left(\begin{array}{c}
-3 \\
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
5 \\
-6 \\
0 \\
-3 \\
1
\end{array}\right)
$$

(c) Find a basis for $\operatorname{col}(A)$, the column space of A.

Solution. $\mathbf{u}^{1}, \mathbf{u}^{2}, \mathbf{u}^{4}$ form a basis for $\operatorname{col}(A)$ because the corresponding vectors $\mathbf{e}^{1}, \mathbf{e}^{2}, \mathbf{e}^{3}$ form a basis for $\operatorname{col}(\operatorname{rref}(A))$.
(d) Compute the dimension of $\operatorname{null}\left(A^{T}\right)$, the left null space of A. Explain why it is not possible to find a basis for null $\left(A^{T}\right)$ from the information given.

Solution. By the rank-nullity theorem, we have $\operatorname{dim} \operatorname{null}\left(A^{T}\right)+\operatorname{rank}\left(A^{T}\right)=4$. We have already $\operatorname{computed} \operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)=3$, so $\operatorname{dim} \operatorname{null}\left(A^{T}\right)=1$. But we can't compute null $\left(A^{T}\right)$ because the row operations that transform A to $\operatorname{rref}(A)$ correspond to column operations on A^{T}, and column operations can change the null space.
(e) Find a basis for $\operatorname{col}\left(A^{T}\right)$, the row space of A.

Solution. Row operations do not change the row space, so the following vectors are a basis for the row space:

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 0 & 3 & 0 & -5
\end{array}\right)^{T} \\
& \left(\begin{array}{lllll}
0 & 1 & -1 & 0 & 6
\end{array}\right)^{T} \\
& \left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 3
\end{array}\right)^{T}
\end{aligned}
$$

(f) Find a 3-element subset of $\left\{\mathbf{u}^{1}, \mathbf{u}^{2}, \mathbf{u}^{3}, \mathbf{u}^{4}, \mathbf{u}^{5}\right\}$ that is linearly dependent.

Solution. The only soluiton is $\left\{\mathbf{u}^{1}, \mathbf{u}^{2}, \mathbf{u}^{3}\right\}$. The corresponding columns of $\operatorname{rref}(A)$ are $\mathbf{e}^{1}, \mathbf{e}^{2}$, and $3 \mathbf{e}^{1}-\mathbf{e}^{2}$, which are linearly independent. Since the linear relationships between the columns of $\operatorname{rref}(A)$ are the same as the linear relationships between the corresponding columns of A, we have $\mathbf{u}^{3}=3 \mathbf{u}^{1}-\mathbf{u}^{2}$.
3. Suppose that $T: V \rightarrow V$ is a linear transformation and that X and Y are bases of V. Prove that $\operatorname{det}\left([T]_{X}^{X}\right)=\operatorname{det}\left([T]_{Y}^{Y}\right)$. (Hint: write down the change of basis formula that relates $[T]_{X}^{X}$ and $[T]_{Y}^{Y}$.)

Solution. We have the change of basis formula:

$$
[T]_{Y}^{Y}=[\mathrm{id}]_{Y}^{X}[T]_{X}^{X}[\mathrm{id}]_{X}^{Y}
$$

Therefore

$$
\operatorname{det}[T]_{Y}^{Y}=\operatorname{det}\left([\mathrm{id}]_{Y}^{X}\right) \operatorname{det}\left([T]_{X}^{X}\right) \operatorname{det}\left([\mathrm{id}]_{X}^{Y}\right)
$$

But $[\mathrm{id}]_{Y}^{X}$ and $[\mathrm{id}]_{X}^{Y}$ are inverse to each other, $\operatorname{so} \operatorname{det}\left([\mathrm{id}]_{Y}^{X}\right) \operatorname{det}\left([\mathrm{id}]_{X}^{Y}\right)=1$. Substituting this into the above equation gives what we want:

$$
\operatorname{det}[T]_{X}^{X}=\operatorname{det}[T]_{Y}^{Y}
$$

4. Suppose that $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear transformations. Prove that dim $\operatorname{ker}(T \circ S) \leq \operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{ker}(S)$. (Hint: restrict S to $\operatorname{ker}(T \circ S)$ to get a linear transformation $S^{\prime}: \operatorname{ker}(T \circ S) \rightarrow \operatorname{ker}(T)$.)

Solution. Let S^{\prime} be the restriction of S to $\operatorname{ker}(T \circ S)$. If $\mathbf{v} \in \operatorname{ker}(T \circ S)$ then $T\left(S^{\prime}(\mathbf{v})\right)=$ $T(S(\mathbf{v}))=\mathbf{0}$, so image $S^{\prime} \subset \operatorname{ker}(T)$ and in particular, dimimage $\left(S^{\prime}\right) \leq \operatorname{dim} \operatorname{ker}(T)$. We also have $\operatorname{ker}\left(S^{\prime}\right) \subset \operatorname{ker}(S)$ because if $\mathbf{v} \in \operatorname{ker}\left(S^{\prime}\right)$ then $S(\mathbf{v})=\mathbf{0}$, by definition. Thus dim $\operatorname{ker}\left(S^{\prime}\right) \leq \operatorname{dim} \operatorname{ker}(S)$. (Actually $\operatorname{ker}(S)=\operatorname{ker}\left(S^{\prime}\right)$, but we won't need this.)

By the rank-nullity theorem, we now have

$$
\operatorname{dim} \operatorname{ker}(T \circ S)=\operatorname{dim} \operatorname{ker}\left(S^{\prime}\right)+\operatorname{dim} \operatorname{image}\left(S^{\prime}\right) \leq \operatorname{dim} \operatorname{ker}(S)+\operatorname{dim} \operatorname{ker}(T)
$$

