Problem Set #4

Math 2135 Spring 2020

Due Friday, April 17

1. Consider the following matrix:

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -4 & -3 & 2 \\ 1 & 1 & t \end{pmatrix}$$

- (a) Find the inverse of A when t = 1.
- (b) Find all values of t such that A in invertible. Explain how you know that A is invertible for those values of t, and how you know it is not invertible for all other values.
- (c) For what values of t does the inverse of A have integer entries?
- 2. In this question, we will study an unknown 4×5 matrix, A. We will write \mathbf{u}^i for the columns of A and \mathbf{v}_j for the rows of A:

$$A = \begin{pmatrix} \mathbf{u}^1 & \mathbf{u}^2 & \mathbf{u}^3 & \mathbf{u}^4 & \mathbf{u}^5 \end{pmatrix}$$

While we do not know what A is, we do know its reduced row echelon form:

$$\operatorname{rref}(A) = \begin{pmatrix} 1 & 0 & 3 & 0 & -5 \\ 0 & 1 & -1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Answer the following questions using the matrix $\operatorname{rref}(A)$, above, and the column vectors $\mathbf{u}^1, \ldots, \mathbf{u}^5$. Justify your answers, briefly, and remember that $A \neq \operatorname{rref}(A)$.

- (a) What is rank(A)?
- (b) Find a basis for null(A), the null space of A.
- (c) Find a basis for col(A), the column space of A.
- (d) Compute the dimension of $\operatorname{null}(A^T)$, the left null space of A. Explain why it is not possible to find a basis for $\operatorname{null}(A^T)$ from the information given.
- (e) Find a basis for $col(A^T)$, the row space of A.
- (f) Find a 3-element subset of $\{\mathbf{u}^1, \mathbf{u}^2, \mathbf{u}^3, \mathbf{u}^4, \mathbf{u}^5\}$ that is linearly dependent.
- 3. Suppose that $T: V \to V$ is a linear transformation and that X and Y are bases of V. Prove that $\det([T]_X^X) = \det([T]_Y^Y)$. (Hint: write down the change of basis formula that relates $[T]_X^X$ and $[T]_Y^Y$.)
- 4. Suppose that $S: U \to V$ and $T: V \to W$ are linear transformations. Prove that $\dim \ker(T \circ S) \leq \dim \ker(T) + \dim \ker(S)$. (Hint: restrict S to $\ker(T \circ S)$ to get a linear transformation $S': \ker(T \circ S) \to \ker(T)$.)