Problem Set #2

Math 2135 Spring 2020

Due Saturday, February 22

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the transformation given by the following formula:

$$T\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = \begin{pmatrix}3x_1 - x_3\\x_1 - 4x_2 + x_3\end{pmatrix}$$

(a) Find the matrix $[T]_E^E$ in the standard bases.

Solution.

$$\begin{pmatrix} 3 & 0 & -1 \\ 1 & -4 & 1 \end{pmatrix}$$

-	-	-	
L			

(b) Find all solutions to the equations $T(\mathbf{x}) = \mathbf{0}$.

Solution. It is equivalent to find solutions to the following system of equations:

$$3x_1 - x_3 = 0$$

$$x_1 - 4x_2 + x_3 = 0$$

Adding the first equation to the second, we get

$$3x_1 - x_3 = 0 4x_1 - 4x_2 = 0$$

These give $x_1 = x_2$ and $x_3 = 3x_1$. Therefore the solutions are all vectors of the form

$$\begin{pmatrix} x_1 \\ x_1 \\ 3x_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$

where x_1 is allowed to be any real number.

2. Let V be the vector space of straight-line motions in 3-dimensions. Suppose that W is a plane through the origin in V and that $X = (\mathbf{x}^1 \ \mathbf{x}^2 \ \mathbf{x}^3)$ is a basis of V such that \mathbf{x}^1 and \mathbf{x}^2 are in W and \mathbf{x}^3 is perpendicular to W. Let $T: V \to V$ be the reflection across the plane W. Find the matrix $[T]_X^X$ of T in the basis X.

Solution. By definition, $T(\mathbf{x}^1) = \mathbf{x}^1$ and $T(\mathbf{x}^2) = \mathbf{x}^2$ and $T(\mathbf{x}^3) = -\mathbf{x}^3$. Therefore $[T]_X^X = ([T(\mathbf{x}^1)]_X \ [T(\mathbf{x}^2)]_X \ [T(\mathbf{x}^3)]_X) = ([\mathbf{x}^1]_X \ [\mathbf{x}^2]_X \ [\mathbf{x}^3]_X) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

3. Let V be the vector space consisting of all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x) = a \exp(x) + b \cos(x) + c \sin(x)$$

for some real numbers a, b, and c. (The function exp refers to the exponential, $\exp(x) = e^x$.) Let F be the basis (exp cos sin) of V. Let $T : V \to V$ be the linear transformation T(f) = f + f' + 2f'' (where f' is the derivative of f). You may use the linearity of the derivative in your proof.

(i) Prove that T is a linear transformation.

Solution. For real numbers a and b, we have

$$T(af + bg) = (af + bg) + (af + bg)' + 2(af + bg)''$$

= $af + bg + af' + bg' + 2af'' + 2bg''$
= $a(f + f' + 2f'') + b(g + g' + 2g'')$
= $aT(f) + bT(g)$

This shows that T preserves scalar multiplication and vector addition, so T is linear. $\hfill \Box$

(ii) Compute $[T]_F^F$.

Solution. We have $T(\exp) = \exp + \exp + 2 \exp = 4 \exp \operatorname{since} \exp' = \exp$. We have $T(\cos) = \cos - \sin - 2 \cos = -\cos - \sin \operatorname{since} \cos' = -\sin \operatorname{and} \cos'' = -\cos$. We have $T(\sin) = \sin + \cos - 2 \sin = \cos - \sin$. Thus

$$[T]_X^X = ([T(\exp)]_X [T(\cos)]_X [T(\sin)]_X)$$

= $([4 \exp]_X [-\cos - \sin]_X [\cos - \sin]_X)$
= $\begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & -1 \end{pmatrix}$

4. For each i = 1, ..., n, let $\mathbf{e}_i : \mathbb{R}^n \to \mathbb{R}$ be the linear transformation given by the following formula:

$$\mathbf{e}_i \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_i$$

(a) Find the matrix of each \mathbf{e}_i .

Solution.

$$[\mathbf{e}_i] = \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{pmatrix}$$

with the 1 in the i-th column.

(b) Let $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ be the vector space of linear transformations from \mathbb{R}^n to \mathbb{R} . Prove that $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are linearly independent in $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$. (You do not need to verify that $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ is a vector space.)

Solution. Suppose $\sum a^i \mathbf{e}_i = \mathbf{0}$. Then for every vector $\mathbf{v} \in \mathbf{R}^n$, we have $\sum a^i \mathbf{e}_i(\mathbf{v}) = 0$. In particular, $\sum a^i \mathbf{e}_i(\mathbf{e}^j) = 0$ for each standard basis vector \mathbf{e}^j . Since $\mathbf{e}_i(\mathbf{e}^j) = 0$ for $i \neq j$ and $\mathbf{e}_i(\mathbf{e}^j) = 1$ for i = j this equation simplifies to $a^j = 0$. This holds for all j, so we conclude the only solution to $\sum a^j \mathbf{e}_j = \mathbf{0}$ is $a^1 = \cdots = a^n = 0$. Therefore the $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are linearly independent.

(c) Prove that $\mathbf{e}_1, \ldots, \mathbf{e}_n$ span $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$.

Solution. Suppose that $f : \mathbf{R}^n \to \mathbf{R}$ is a linear transformation. We will prove that $f = \sum_j f(\mathbf{e}^j)\mathbf{e}_j$. We have to check that f and $\sum_j f(\mathbf{e}^j)\mathbf{e}_j$ take the same values on every vector \mathbf{v} in \mathbb{R}^n . Suppose that $\mathbf{v} = a_1\mathbf{e}^1 + \cdots + a_n\mathbf{e}^n$. Then we have

$$f(\mathbf{v}) = f(a_1 \mathbf{e}^1 + \dots + a_n \mathbf{e}^n)$$

= $a_1 f(\mathbf{e}^1) + \dots + a_n f(\mathbf{e}^n)$
$$\sum f(\mathbf{e}^j) \mathbf{e}_j(\mathbf{v}) = \sum_j f(\mathbf{e}^j) \mathbf{e}_j(\sum_i a_i \mathbf{e}^i)$$

= $\sum_{i,j} f(\mathbf{e}^j) a_i \mathbf{e}_j(\mathbf{e}^i)$
= $f(\mathbf{e}^1) a_1 + \dots + f(\mathbf{e}^n) a_n$

Therefore $f = \sum_{j} f(\mathbf{e}^{j}) \mathbf{e}_{j}$.

(d) Conclude that $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are a basis for $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$.

Solution. We have shown that they span $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ and are linearly independent.