Problem Set \#2

Math 2135 Spring 2020
Due Saturday, February 22

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the transformation given by the following formula:

$$
T\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{3 x_{1}-x_{3}}{x_{1}-4 x_{2}+x_{3}}
$$

(a) Find the matrix $[T]_{E}^{E}$ in the standard bases.

Solution.

$$
\left(\begin{array}{ccc}
3 & 0 & -1 \\
1 & -4 & 1
\end{array}\right)
$$

(b) Find all solutions to the equations $T(\mathbf{x})=\mathbf{0}$.

Solution. It is equivalent to find solutions to the following system of equations:

$$
\begin{array}{lr}
3 x_{1}-x_{3}=0 \\
x_{1}-4 x_{2}+x_{3}=0
\end{array}
$$

Adding the first equation to the second, we get

$$
\begin{aligned}
3 x_{1}-x_{3} & =0 \\
4 x_{1}-4 x_{2} & =0
\end{aligned}
$$

These give $x_{1}=x_{2}$ and $x_{3}=3 x_{1}$. Therefore the solutions are all vectors of the form

$$
\left(\begin{array}{c}
x_{1} \\
x_{1} \\
3 x_{1}
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)
$$

where x_{1} is allowed to be any real number.
2. Let V be the vector space of straight-line motions in 3-dimensions. Suppose that W is a plane through the origin in V and that $X=\left(\begin{array}{lll}\mathbf{x}^{1} & \mathbf{x}^{2} & \mathbf{x}^{3}\end{array}\right)$ is a basis of V such that \mathbf{x}^{1} and \mathbf{x}^{2} are in W and \mathbf{x}^{3} is perpendicular to W. Let $T: V \rightarrow V$ be the reflection across the plane W. Find the matrix $[T]_{X}^{X}$ of T in the basis X.

Solution. By definition, $T\left(\mathbf{x}^{1}\right)=\mathbf{x}^{1}$ and $T\left(\mathbf{x}^{2}\right)=\mathbf{x}^{2}$ and $T\left(\mathbf{x}^{3}\right)=-\mathbf{x}^{3}$. Therefore

$$
[T]_{X}^{X}=\left(\left[\begin{array}{lll}
{\left[\left(\mathbf{x}^{1}\right)\right]_{X}} & {\left[T\left(\mathbf{x}^{2}\right)\right]_{X}} & \left.\left[T\left(\mathbf{x}^{3}\right)\right]_{X}\right)=\left(\left[\begin{array}{lll}
{\left[\mathbf{x}^{1}\right]_{X}} & {\left[\mathbf{x}^{2}\right]_{X}} & {\left[\mathbf{x}^{3}\right]_{X}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) ~\right.
\end{array}\right.\right.
$$

3. Let V be the vector space consisting of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x)=a \exp (x)+b \cos (x)+c \sin (x)
$$

for some real numbers a, b, and c. (The function exp refers to the exponential, $\exp (x)=e^{x}$.) Let F be the basis (exp cos $\left.\sin \right)$ of V. Let $T: V \rightarrow V$ be the linear transformation $T(f)=f+f^{\prime}+2 f^{\prime \prime}$ (where f^{\prime} is the derivative of f). You may use the linearity of the derivative in your proof.
(i) Prove that T is a linear transformation.

Solution. For real numbers a and b, we have

$$
\begin{aligned}
T(a f+b g) & =(a f+b g)+(a f+b g)^{\prime}+2(a f+b g)^{\prime \prime} \\
& =a f+b g+a f^{\prime}+b g^{\prime}+2 a f^{\prime \prime}+2 b g^{\prime \prime} \\
& =a\left(f+f^{\prime}+2 f^{\prime \prime}\right)+b\left(g+g^{\prime}+2 g^{\prime \prime}\right) \\
& =a T(f)+b T(g)
\end{aligned}
$$

This shows that T preserves scalar multiplication and vector addition, so T is linear.
(ii) Compute $[T]_{F}^{F}$.

Solution. We have $T(\exp)=\exp +\exp +2 \exp =4 \exp$ since $\exp ^{\prime}=\exp$. We have $T(\cos)=\cos -\sin -2 \cos =-\cos -\sin$ since $\cos ^{\prime}=-\sin$ and $\cos ^{\prime \prime}=-\cos$. We have $T(\sin)=\sin +\cos -2 \sin =\cos -\sin$. Thus

$$
\begin{aligned}
{[T]_{X}^{X} } & =\left(\begin{array}{lll}
{[T(\exp)]_{X}} & {[T(\cos)]_{X}} & {[T(\sin)]_{X}}
\end{array}\right) \\
& =\left(\begin{array}{lll}
{[4 \exp]_{X}} & {[-\cos -\sin]_{X}} & {[\cos -\sin]_{X}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & -1 & 1 \\
0 & -1 & -1
\end{array}\right)
\end{aligned}
$$

4. For each $i=1, \ldots, n$, let $\mathbf{e}_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the linear transformation given by the following formula:

$$
\mathbf{e}_{i}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=x_{i}
$$

(a) Find the matrix of each \mathbf{e}_{i}.

Solution.

$$
\left[\mathbf{e}_{i}\right]=\left(\begin{array}{lllllll}
0 & \cdots & 0 & 1 & 0 & \cdots & 0
\end{array}\right)
$$

with the 1 in the i-th column.
(b) Let $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be the vector space of linear transformations from \mathbb{R}^{n} to \mathbb{R}. Prove that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are linearly independent in $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. (You do not need to verify that $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is a vector space.)

Solution. Suppose $\sum a^{i} \mathbf{e}_{i}=\mathbf{0}$. Then for every vector $\mathbf{v} \in \mathbf{R}^{n}$, we have $\sum a^{i} \mathbf{e}_{i}(\mathbf{v})=$ 0 . In particular, $\sum a^{i} \mathbf{e}_{i}\left(\mathbf{e}^{j}\right)=0$ for each standard basis vector \mathbf{e}^{j}. Since $\mathbf{e}_{i}\left(\mathbf{e}^{j}\right)=0$ for $i \neq j$ and $\mathbf{e}_{i}\left(\mathbf{e}^{j}\right)=1$ for $i=j$ this equation simplifies to $a^{j}=0$. This holds for all j, so we conlcude the only solution to $\sum a^{j} \mathbf{e}_{j}=\mathbf{0}$ is $a^{1}=\cdots=a^{n}=0$. Therefore the $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are linearly independent.
(c) Prove that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \operatorname{span} \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

Solution. Suppose that $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a linear transformation. We will prove that $f=\sum_{j} f\left(\mathbf{e}^{j}\right) \mathbf{e}_{j}$. We have to check that f and $\sum_{j} f\left(\mathbf{e}^{j}\right) \mathbf{e}_{j}$ take the same values on every vector \mathbf{v} in \mathbb{R}^{n}. Suppose that $\mathbf{v}=a_{1} \mathbf{e}^{1}+\cdots+a_{n} \mathbf{e}^{n}$. Then we have

$$
\begin{aligned}
f(\mathbf{v}) & =f\left(a_{1} \mathbf{e}^{1}+\cdots+a_{n} \mathbf{e}^{n}\right) \\
& =a_{1} f\left(\mathbf{e}^{1}\right)+\cdots+a_{n} f\left(\mathbf{e}^{n}\right) \\
\sum f\left(\mathbf{e}^{j}\right) \mathbf{e}_{j}(\mathbf{v}) & =\sum_{j} f\left(\mathbf{e}^{j}\right) \mathbf{e}_{j}\left(\sum_{i} a_{i} \mathbf{e}^{i}\right) \\
& =\sum_{i, j} f\left(\mathbf{e}^{j}\right) a_{i} \mathbf{e}_{j}\left(\mathbf{e}^{i}\right) \\
& =f\left(\mathbf{e}^{1}\right) a_{1}+\cdots+f\left(\mathbf{e}^{n}\right) a_{n}
\end{aligned}
$$

Therefore $f=\sum_{j} f\left(\mathbf{e}^{j}\right) \mathbf{e}_{j}$.
(d) Conclude that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are a basis for $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

Solution. We have shown that they span $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ and are linearly independent.

