Problem Set #2

Math 2135 Spring 2020

Due Saturday, February 22

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the transformation given by the following formula:

$$T\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix} = \begin{pmatrix}3x_1 - x_3\\x_1 - 4x_2 + x_3\end{pmatrix}$$

- (a) Find the matrix $[T]_E^E$ in the standard bases.
- (b) Find all solutions to the equations $T(\mathbf{x}) = \mathbf{0}$.
- 2. Let V be the vector space of straight-line motions in 3-dimensions. Suppose that W is a plane through the origin in V and that $X = (\mathbf{x}^1 \ \mathbf{x}^2 \ \mathbf{x}^3)$ is a basis of V such that \mathbf{x}^1 and \mathbf{x}^2 are in W and \mathbf{x}^3 is perpendicular to W. Let $T: V \to V$ be the reflection across the plane W. Find the matrix $[T]_X^X$ of T in the basis X.
- 3. Let V be the vector space consisting of all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x) = a \exp(x) + b \cos(x) + c \sin(x)$$

for some real numbers a, b, and c. (The function exp refers to the exponential, $\exp(x) = e^x$.) Let F be the basis (exp cos sin) of V. Let $T : V \to V$ be the linear transformation T(f) = f + f' + 2f'' (where f' is the derivative of f). You may use the linearity of the derivative in your proof.

- (i) Prove that T is a linear transformation.
- (ii) Compute $[T]_F^F$.
- 4. For each i = 1, ..., n, let $\mathbf{e}_i : \mathbb{R}^n \to \mathbb{R}$ be the linear transformation given by the following formula:

$$\mathbf{e}_i \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_i$$

- (a) Find the matrix of each \mathbf{e}_i .
- (b) Let $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ be the vector space of linear transformations from \mathbb{R}^n to \mathbb{R} . Prove that $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are linearly independent in $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$. (You do not need to verify that $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$ is a vector space.)
- (c) Prove that $\mathbf{e}_1, \ldots, \mathbf{e}_n$ span $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$.
- (d) Conclude that $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are a basis for $\mathcal{L}(\mathbb{R}^n, \mathbb{R})$.