Problem Set \#2

Math 2135 Spring 2020

Due Saturday, February 22

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the transformation given by the following formula:

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{3 x_{1}-x_{3}}{x_{1}-4 x_{2}+x_{3}}
$$

(a) Find the matrix $[T]_{E}^{E}$ in the standard bases.
(b) Find all solutions to the equations $T(\mathbf{x})=\mathbf{0}$.
2. Let V be the vector space of straight-line motions in 3-dimensions. Suppose that W is a plane through the origin in V and that $X=\left(\begin{array}{lll}\mathrm{x}^{1} & \mathrm{x}^{2} & \mathrm{x}^{3}\end{array}\right)$ is a basis of V such that \mathbf{x}^{1} and \mathbf{x}^{2} are in W and \mathbf{x}^{3} is perpendicular to W. Let $T: V \rightarrow V$ be the reflection across the plane W. Find the matrix $[T]_{X}^{X}$ of T in the basis X.
3. Let V be the vector space consisting of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x)=a \exp (x)+b \cos (x)+c \sin (x)
$$

for some real numbers a, b, and c. (The function exp refers to the exponential, $\exp (x)=e^{x}$.) Let F be the basis (exp cos \sin) of V. Let $T: V \rightarrow V$ be the linear transformation $T(f)=f+f^{\prime}+2 f^{\prime \prime}$ (where f^{\prime} is the derivative of f). You may use the linearity of the derivative in your proof.
(i) Prove that T is a linear transformation.
(ii) Compute $[T]_{F}^{F}$.
4. For each $i=1, \ldots, n$, let $\mathbf{e}_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the linear transformation given by the following formula:

$$
\mathbf{e}_{i}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=x_{i}
$$

(a) Find the matrix of each \mathbf{e}_{i}.
(b) Let $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be the vector space of linear transformations from \mathbb{R}^{n} to \mathbb{R}. Prove that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are linearly independent in $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. (You do not need to verify that $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is a vector space.)
(c) Prove that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \operatorname{span} \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
(d) Conclude that $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are a basis for $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.

