Graded Problem Set \#1

Math 2135 Spring 2020
Due Friday, January 24

1. Express each of the following vectors as a single column vector whose entries are real numbers:
(i)

$$
\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)+2\left(\begin{array}{c}
-1 \\
1 \\
-3
\end{array}\right)
$$

Solution.

$$
\left(\begin{array}{c}
1 \\
1 \\
-4
\end{array}\right)
$$

(ii)

$$
\left(\begin{array}{cc}
2 & 4 \\
-1 & 3
\end{array}\right)\binom{1}{-1}
$$

Solution.

$$
\binom{-2}{-4}
$$

2. Solve the following equation for a vector \mathbf{x} in \mathbb{R}^{2} :

$$
\left(\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right) \mathbf{x}=\binom{-4}{13}
$$

Solution. Write $\mathbf{x}=\binom{x_{1}}{x_{2}}$. Then we get the system of linear equations:

$$
\begin{aligned}
3 x_{1}+x_{2} & =-4 \\
-x_{1}+2 x_{2} & =13
\end{aligned}
$$

Add 3 times the second equation equation to the first. We get:

$$
\begin{gathered}
7 x_{2}=35 \\
-x_{1}+2 x_{2}=13
\end{gathered}
$$

The first equation gives $x_{2}=5$. Then substitute into the second equation to get

$$
-x_{1}+10=13
$$

and solve to get $x_{1}=-3$. Thus $\mathbf{x}=\binom{5}{-3}$.
3. Let V be the set of all 2×2 matrices with real entries, with zero vector, vector addition, and scalar multiplication defined as follows:
V0) $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
V1) $\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)+\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{3} & y_{4}\end{array}\right)=\left(\begin{array}{ll}x_{1}+y_{1} & x_{2}+y_{2} \\ x_{3}+y_{3} & x_{4}+y_{4}\end{array}\right)$
V2) $c\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)=\left(\begin{array}{ll}c x_{1} & c x_{2} \\ c x_{3} & c x_{4}\end{array}\right)$
Prove the distributive property for scalar multiplication over vector addition $(c(\mathbf{x}+\mathbf{y})=$ $(c \mathbf{x})+(c \mathbf{y})$ for all $c \in \mathbb{R}, \mathbf{x} \in V$, and $\mathbf{y} \in V)$. You may use any true properties you know about the real numbers, but no properties of 2×2 matrices other than the ones given above.

Solution. Suppose that $c \in \mathbb{R}$ and $\mathbf{x}=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{3} & y_{4}\end{array}\right)$. Then we have the following:

$$
\begin{array}{rlr}
c(\mathbf{x}+\mathbf{y}) & =c\left(\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)+\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{3} & y_{4}
\end{array}\right)\right) \\
& =c\left(\begin{array}{ll}
x_{1}+y_{1} & x_{2}+y_{2} \\
x_{3}+y_{3} & x_{4}+y_{4}
\end{array}\right) & \text { definition of vector addition } \\
& =\left(\begin{array}{ll}
c\left(x_{1}+y_{1}\right) & c\left(x_{2}+y_{2}\right) \\
c\left(x_{3}+y_{3}\right) & c\left(x_{4}+y_{4}\right)
\end{array}\right) & \text { definition of scalar multiplication } \\
& =\left(\begin{array}{ll}
c x_{1}+c y_{1} & c x_{2}+c y_{2} \\
c x_{3}+c y_{3} & c x_{4}+c y_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
c x_{1} & c x_{2} \\
c x_{3} & c x_{4}
\end{array}\right)+\left(\begin{array}{ll}
c y_{1} & c y_{2} \\
c y_{3} & c y_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
c\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right)
\end{array}\right)+\left(\begin{array}{ll}
c\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{3} & y_{4}
\end{array}\right)
\end{array}\right) & \text { defistributive property in } \mathbb{R} \\
& =(c \mathbf{x})+(c \mathbf{y}) & \text { definition of vector addition of scalar multiplication }
\end{array}
$$

4. Prove that if V is a (real) vector space with finitely many elements then V has exactly one element.

Solution. Suppose that \mathbf{v} is a vector in V and that V is a finite set. Since there are infinitely many real numbers and only finitely many elements of V, there must be at least two different real numbers such a and b such that $a \mathbf{v}=b \mathbf{v}$. But then $(a-b) \mathbf{v}=\mathbf{0}$. Since $a \neq b$, the number $a-b$ is invertible, so $\mathbf{v}=(a-b)^{-1}(a-b) \mathbf{v}=(a-b)^{-1} \mathbf{0}=\mathbf{0}$. Therefore $\mathbf{v}=\mathbf{0}$. This shoes that every vector in V is equal to $\mathbf{0}$, so V has only one element.

