Graded Problem Set \#1

Math 2135 Spring 2020
Due Friday, January 24

1. Express each of the following vectors as a single column vector whose entries are real numbers:

$$
\left(\begin{array}{c}
3 \tag{i}\\
-1 \\
2
\end{array}\right)+2\left(\begin{array}{c}
-1 \\
1 \\
-3
\end{array}\right)
$$

(ii)

$$
\left(\begin{array}{cc}
2 & 4 \\
-1 & 3
\end{array}\right)\binom{1}{-1}
$$

2. Solve the following equation for a vector \mathbf{x} in \mathbb{R}^{2} :

$$
\left(\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right) \mathrm{x}=\binom{-4}{13}
$$

3. Let V be the set of all 2×2 matrices with real entries, with zero vector, vector addition, and scalar multiplication defined as follows:

V0) $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
V1) $\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)+\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{3} & y_{4}\end{array}\right)=\left(\begin{array}{ll}x_{1}+y_{1} & x_{2}+y_{2} \\ x_{3}+y_{3} & x_{4}+y_{4}\end{array}\right)$
V2) $c\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)=\left(\begin{array}{ll}c x_{1} & c x_{2} \\ c x_{3} & c x_{4}\end{array}\right)$
Prove the distributive property for scalar multiplication over vector addition $(c(\mathbf{x}+\mathbf{y})=$ $(c \mathbf{x})+(c \mathbf{y})$ for all $c \in \mathbb{R}, \mathbf{x} \in V$, and $\mathbf{y} \in V)$. You may use any true properties you know about the real numbers, but no properties of 2×2 matrices other than the ones given above.
4. Prove that if V is a (real) vector space with finitely many elements then V has exactly one element.

