Handout \#8

Math 2135 Spring 2020

Monday, April 13

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation with the following matrix:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Find all real numbers λ such that $A-\lambda I$ is not invertible. (Hint: use the determinant.)
2. For each λ you found in the last part of the problem, find all solutions \mathbf{v} for the following equation:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \mathbf{v}=\lambda \mathbf{v}
$$

(Hint: find the kernel of $A-\lambda I$.)
3. Find a basis $Y=\left(\begin{array}{ll}\mathbf{y}^{1} & \mathbf{y}^{2}\end{array}\right)$ of \mathbb{R}^{2} such that $T\left(\mathbf{y}^{i}\right)$ is a multiple of \mathbf{y}^{i}.
4. Find $[T]_{Y}^{Y}$.
5. Find $\left[T^{n}\right]_{Y}^{Y}$ for all integers $n \geq 0$, where $T^{n}=T \circ \cdots \circ T$ (that is, T composed with itself n times).
6. Let $E=\left(\begin{array}{ll}\mathbf{e}^{1} & \mathbf{e}^{2}\end{array}\right)$ be the standard basis of \mathbf{R}^{2}. Compute $[\mathrm{id}]_{E}^{Y}$ and $[\mathrm{id}]_{Y}^{E}$. (Remember: there is a quick formula for the inverse of a 2×2 matrix.)
7. Use change of basis to compute $\left[T^{n}\right]_{E}^{E}$ where $E=\left(\begin{array}{ll}\mathbf{e}^{1} & \mathbf{e}^{2}\end{array}\right)$ is the standard basis of \mathbb{R}^{2}.
8. Find a formula for the n-th Fibonacci number.

