Handout \#7

Math 2135 Spring 2020

Friday, April 3

In class we proved the following formulas for the determinant:
(a) The determinant is linear in each column:

$$
\operatorname{det}\left(\begin{array}{lllll}
\mathbf{u}^{1} & \cdots & (a \mathbf{v}+b \mathbf{w}) & \cdots & \mathbf{u}^{n}
\end{array}\right)=a \operatorname{det}\left(\begin{array}{lllll}
\mathbf{u}^{1} & \cdots & \mathbf{v} & \cdots & \mathbf{u}^{n}
\end{array}\right)+b \operatorname{det}\left(\begin{array}{lllll}
\mathbf{u}^{1} & \cdots & \mathbf{w} & \cdots & \mathbf{u}^{n}
\end{array}\right)
$$

(b) If adjacent columns of A are repeated then $\operatorname{det}(A)=0$:

$$
\operatorname{det}\left(\begin{array}{llllll}
\mathbf{u}^{1} & \cdots & \mathbf{v} & \mathbf{v} & \cdots & \mathbf{u}^{n}
\end{array}\right)=0
$$

(c) The determinant of the identity matrix is 1 :

$$
\operatorname{det}\left(\begin{array}{lll}
a_{1} \mathbf{e}^{1} & \cdots & a_{n} \mathbf{e}^{n}
\end{array}\right)=a_{1} \cdots a_{n}
$$

1. Use these properties to demonstrate the following additional properties of the determinant:
(a) Swapping adjacent columns of A changes the sign of $\operatorname{det}(A)$:

$$
\operatorname{det}\left(\begin{array}{llllll}
\mathbf{u}^{1} & \cdots & \mathbf{v} & \mathbf{w} & \cdots & \mathbf{u}^{n}
\end{array}\right)=-\operatorname{det}\left(\begin{array}{llllll}
u^{1} & \cdots & \mathbf{w} & \mathbf{v} & \cdots & \mathbf{u}^{n}
\end{array}\right)
$$

(b) Swapping any two columns of A changes the sign of $\operatorname{det}(A)$ (hint: use the last part an odd number of times):

$$
\left.\operatorname{det}\left(\begin{array}{lllllll}
\mathbf{u}^{1} & \cdots & \mathbf{v} & \cdots & \mathbf{w} & \cdots & \mathbf{u}^{n}
\end{array}\right)=-\begin{array}{lllllll}
\operatorname{det}\left(\begin{array}{lllll}
u^{1} & \cdots & \mathbf{w} & \cdots & \mathbf{v}
\end{array} \cdots\right. & \mathbf{u}^{n}
\end{array}\right)
$$

(c) If any column of A is repeated then $\operatorname{det}(A)=0$:

$$
\operatorname{det}\left(\begin{array}{lllllll}
\mathbf{u}^{1} & \cdots & \mathbf{v} & \cdots & \mathbf{v} & \cdots & \mathbf{u}^{n}
\end{array}\right)=0
$$

(d) Adding a multiple of one column of A to another does not change the determinant of A :

$$
\operatorname{det}\left(\begin{array}{lllllll}
\mathbf{u}^{1} & \cdots & \mathbf{u}^{i} & \cdots & \mathbf{u}^{j}+c \mathbf{u}^{i} & \cdots & \mathbf{u}^{n}
\end{array}\right)=\operatorname{det}\left(\begin{array}{lllllll}
u^{1} & \cdots & \mathbf{u}^{i} & \cdots & \mathbf{u}^{j} & \cdots & \mathbf{u}^{n}
\end{array}\right)
$$

For the next few exercises, you will need to use the fact that

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

We will prove this fact using your work above in class on Wednesday.
2. (LADW, Chapter $3, \S 3, \# 3.5$) Suppose that A is a square matrix such that $A^{n}=0$ for some integer $n \geq 1$. Prove that $\operatorname{det}(A)=0$.
3. Suppose that A is a matrix of real numbers such that A^{n} is the identity matrix. What are the possibilities for $\operatorname{det}(A)$?
4. Suppose $T: V \rightarrow V$ is a linear transformation and X and Y are bases of V. Prove that $\operatorname{det}\left([T]_{X}^{X}\right)=\operatorname{det}\left([T]_{Y}^{Y}\right)$.
5. This exercise gives a geometric interpretation of the sign of the determinant. Let $\mathrm{GL}_{n}(\mathbb{R})$ be the set of invertible $n \times n$ matrices whose entries are real numbers. This is a subset of the set $\mathbb{R}^{n \times n} \mathbb{R}^{n^{2}}$
(a) Show that det : $\mathrm{GL}_{n}(\mathbb{R}) \rightarrow \mathbb{R}-\{0\}$ is a continuous function (hint: sums and products of continuous functions are continuous). Conclude that there can be no continuous path in $\mathrm{GL}_{n}(\mathbb{R})$ connecting a matrix with positive determinant to a matrix with negative determinant.
(b) Show that there is a path in $\mathrm{GL}_{n}(\mathbb{R})$ connecting $\left(\begin{array}{lllllll}\mathbf{u}^{1} & \cdots & \mathbf{u}^{i} & \cdots & \mathbf{u}^{j} & \cdots & \mathbf{u}^{n}\end{array}\right) \quad$ and $\quad\left(\begin{array}{lllllll}\mathbf{u}^{1} & \cdots & \mathbf{u}^{i} & \cdots & \mathbf{u}^{j}+c \mathbf{u}^{i} & \cdots & \mathbf{u}^{n}\end{array}\right)$ and that there is a path in $\mathrm{GL}_{n}(\mathbf{R})$ connecting

$$
\left(\begin{array}{c}
\mathbf{u}_{1} \\
\vdots \\
\mathbf{u}_{i} \\
\vdots \\
\mathbf{u}_{j} \\
\vdots \\
\mathbf{u}_{n}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
\mathbf{u}_{1} \\
\vdots \\
\mathbf{u}_{i} \\
\vdots \\
\mathbf{u}_{j}+c \mathbf{u}_{i} \\
\vdots \\
\mathbf{u}_{n}
\end{array}\right)
$$

(c) Show that every matrix A in $\mathrm{GL}_{n}(\mathbb{R})$ can be connected by a path to either

$$
I=\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right) \quad \text { or } \quad J=\left(\begin{array}{ccccc}
-1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right)
$$

(d) Conclude that $A \in \mathrm{GL}_{n}(\mathbb{R})$ can be connected by a path to the identity matrix if and only if $\operatorname{det}(A)>0$. Otherwise $\operatorname{det}(A)<0$.

