Handout #6

Math 2135 Spring 2020

Friday, March 20

- 1. Suppose an $m \times n$ matrix A has rank r. Compute the dimensions of:
 - (i) $\operatorname{col}(A)$
 - (ii) $\operatorname{null}(A)$
 - (iii) $\operatorname{col}(A^T)$
 - (iv) $\operatorname{null}(A^T)$
- 2. Let P_n be the vector space of polynomials of degree $\leq n$. Let $D: P_n \to P_n$ be the linear transformation $D(f) = \frac{df}{dx}$.
 - (i) What is $\ker(D)$?
 - (ii) What is rank(D)?
 - (iii) Does D have a left inverse? A right inverse?
 - (iv) Why do calculus teachers make you write $\int x^n dx = \frac{x^{n+1}}{n+1} + c$?
- 3. Let P_n be the vector space of polynomials of degree $\leq n$. Let $T: P_n \to \mathbb{R}^{n+1}$ be the linear transformation given by the following formula:

$$T(f) = \begin{pmatrix} f(0) \\ f(1) \\ \vdots \\ f(n) \end{pmatrix}$$

- (i) Prove that ker $T = \{\mathbf{0}\}$.
- (ii) Conclude that T is an isomorphism.
- (iii) Conclude that for any numbers a_0, \ldots, a_n there is a polynomial f such that $f(j) = a_j$ for all $j = 0, \ldots, n$.
- (iv) Find a formula for f.