Handout \#6

Math 2135 Spring 2020

Friday, March 20

1. Suppose an $m \times n$ matrix A has rank r. Compute the dimensions of:
(i) $\operatorname{col}(A)$
(ii) $\operatorname{null}(A)$
(iii) $\operatorname{col}\left(A^{T}\right)$
(iv) $\operatorname{null}\left(A^{T}\right)$
2. Let P_{n} be the vector space of polynomials of degree $\leq n$. Let $D: P_{n} \rightarrow P_{n}$ be the linear transformation $D(f)=\frac{d f}{d x}$.
(i) What is $\operatorname{ker}(D)$?
(ii) What is $\operatorname{rank}(D)$?
(iii) Does D have a left inverse? A right inverse?
(iv) Why do calculus teachers make you write $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$?
3. Let P_{n} be the vector space of polynomials of degree $\leq n$. Let $T: P_{n} \rightarrow \mathbb{R}^{n+1}$ be the linear transformation given by the following formula:

$$
T(f)=\left(\begin{array}{c}
f(0) \\
f(1) \\
\vdots \\
f(n)
\end{array}\right)
$$

(i) Prove that $\operatorname{ker} T=\{\mathbf{0}\}$.
(ii) Conclude that T is an isomorphism.
(iii) Conclude that for any numbers a_{0}, \ldots, a_{n} there is a polynomial f such that $f(j)=$ a_{j} for all $j=0, \ldots, n$.
(iv) Find a formula for f.

