Handout \#5

Math 2135 Spring 2020

Friday, March 13

1. Suppose that A is a 4×4 matrix and let I be the 4×4 identity matrix. Assume that

$$
\operatorname{rref}(A \mid I)=\left(\begin{array}{cccc|cccc}
1 & 2 & 0 & 3 & 0 & 0 & 4 & 5 \\
0 & 0 & 1 & 6 & 0 & 0 & 7 & 8 \\
0 & 0 & 0 & 0 & 1 & 0 & 9 & 10 \\
0 & 0 & 0 & 0 & 0 & 1 & 11 & 12
\end{array}\right)
$$

(a) What is $\operatorname{rref}(A)$?
(b) Find a basis for $\operatorname{null}(A)$. What is its dimension?
(c) Compute the dimension of $\operatorname{col}(A)$. Do you have enough information to compute a basis for $\operatorname{col}(A)$?
(d) Does A have a left inverse?
(e) Does A have a right inverse?
(f) Find a basis for $\operatorname{null}(A)$.
(g) Find a matrix Z such that $Z A=\operatorname{rref}(A)$.
(h) Use the reduced row echelon form above to find a matrix B such that $\operatorname{col}(A)=$ null(B).
(i) Find a basis for $\operatorname{col}(A)$.
2. Do Exercise 5.6 of LADW, Chapter 2, $\S 5$: Show that the system of vectors

$$
\mathbf{v}^{1}=\left(\begin{array}{c}
2 \\
-1 \\
1 \\
5 \\
-3
\end{array}\right), \quad \mathbf{v}^{2}=\left(\begin{array}{c}
3 \\
-2 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}^{3}=\left(\begin{array}{c}
1 \\
1 \\
50 \\
-921 \\
0
\end{array}\right)
$$

is linearly independent by completing it to a basis of \mathbb{R}^{5}. Find a matrix B such that $\operatorname{span}\left\{\mathbf{v}^{1}, \mathbf{v}^{2}, \mathbf{v}^{3}\right\}=\operatorname{null}(B)$.

