Handout #4

Math 2135 Spring 2020

Friday, March 13

1. For which values of c is the following matrix invertible:

$$\begin{pmatrix} 1 & 2 & 1 \\ 3 & 7 & 3 \\ 2 & 3 & c \end{pmatrix}$$

Solution. Compute the RREF.

$$\operatorname{rref} \begin{pmatrix} 1 & 2 & 1 \\ 3 & 7 & 3 \\ 2 & 3 & c \end{pmatrix} = \operatorname{rref} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & c - 2 \end{pmatrix} = \operatorname{rref} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & c - 2 \end{pmatrix}$$

This has a pivot in every row and column if and only if $c \neq 2$.

2. Suppose that A is a 4×4 matrix and let I be the 4×4 identity matrix. Assume that

$$\operatorname{rref}(A|I) = \left(\begin{array}{rrr} 1 & 2 & 0 & 3 & 0 & 0 & 4 & 5 \\ 0 & 0 & 1 & 6 & 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 0 & 1 & 0 & 9 & 10 \\ 0 & 0 & 0 & 0 & 0 & 1 & 11 & 12 \end{array}\right)$$

(a) What is $\operatorname{rref}(A)$?

Solution.

/1	2	0	3
0	0	1	6
0	0	0	0
$\int 0$	0	0	0/

(b) Does A have a left inverse?

Solution. No: it does not have a pivot in every column.

(c) Does A have a right inverse?

Solution. No: it does not have a pivot in every row.

(d) Find a basis for null(A).

Solution.

$$\begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\-6\\1 \end{pmatrix}$$

- (e) Find a matrix Z such that $ZA = \operatorname{rref}(A)$.
- (f) Use the reduced row echelon form above to find a matrix B such that col(A) = null(B).

Solution.

$$B = \begin{pmatrix} 1 & 0 & 9 & 10 \\ 0 & 1 & 11 & 12 \end{pmatrix}$$

Write $\operatorname{rref}(A|I) = (A'|Z)$. Then $A\mathbf{x} = \mathbf{y}$ if and only if $A'\mathbf{x} = Z\mathbf{y}$. If $B\mathbf{y} = \mathbf{0}$ then this system is equivalent to

$$\begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 6 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 0 & 0 & 4 & 5 \\ 0 & 0 & 7 & 8 \end{pmatrix} \mathbf{y}$$

This definitely has a solution because the matrix on the left is in RREF with a pivot in every row. $\hfill \Box$

(g) Find a basis for col(A).

Solution.

$$\begin{pmatrix} -9\\-11\\1\\0 \end{pmatrix}, \begin{pmatrix} -10\\-12\\0\\1 \end{pmatrix}$$

3. Do Exercise 5.6 of LADW, Chapter 2, §5: Show that the system of vectors

$$\mathbf{v}^{1} = \begin{pmatrix} 2\\ -1\\ 1\\ 5\\ -3 \end{pmatrix}, \qquad \mathbf{v}^{2} = \begin{pmatrix} 3\\ -2\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}, \qquad \mathbf{v}^{3} = \begin{pmatrix} 1\\ 1\\ 50\\ -921\\ 0 \end{pmatrix}$$

is linearly independent by completing it to a basis of \mathbb{R}^5 .

Solution. Add the column vectors \mathbf{e}^1 and \mathbf{e}^3 . Then by column operations, can replace \mathbf{v}^2 with $\frac{1}{2}(\mathbf{v}^2 - 3\mathbf{e}^1) = \mathbf{e}^2$. Then by column operations, we can replace \mathbf{v}^3 with $\mathbf{e}^4 = -\frac{1}{921}(\mathbf{v}^3 - \mathbf{e}^1 - \mathbf{e}^2 - 50\mathbf{e}^3)$. Once we have $\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3, \mathbf{e}^4$, we can get \mathbf{e}^5 by subtracting multiples of these from \mathbf{v}^1 . Therefore we have an linearly independent collection, and any subcollection of a linearly independent collection of vectors is independent.