Handout \#4

Math 2135 Spring 2020

Friday, March 13

1. For which values of c is the following matrix invertible:

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
3 & 7 & 3 \\
2 & 3 & c
\end{array}\right)
$$

Solution. Compute the RREF.

$$
\operatorname{rref}\left(\begin{array}{ccc}
1 & 2 & 1 \\
3 & 7 & 3 \\
2 & 3 & c
\end{array}\right)=\operatorname{rref}\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & -1 & c-2
\end{array}\right)=\operatorname{rref}\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & 0 & c-2
\end{array}\right)
$$

This has a pivot in every row and column if and only if $c \neq 2$.
2. Suppose that A is a 4×4 matrix and let I be the 4×4 identity matrix. Assume that

$$
\operatorname{rref}(A \mid I)=\left(\begin{array}{cccc|cccc}
1 & 2 & 0 & 3 & 0 & 0 & 4 & 5 \\
0 & 0 & 1 & 6 & 0 & 0 & 7 & 8 \\
0 & 0 & 0 & 0 & 1 & 0 & 9 & 10 \\
0 & 0 & 0 & 0 & 0 & 1 & 11 & 12
\end{array}\right)
$$

(a) What is $\operatorname{rref}(A)$?

Solution.

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 3 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(b) Does A have a left inverse?

Solution. No: it does not have a pivot in every column.
(c) Does A have a right inverse?

Solution. No: it does not have a pivot in every row.
(d) Find a basis for $\operatorname{null}(A)$.

Solution.

$$
\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
-6 \\
1
\end{array}\right)
$$

(e) Find a matrix Z such that $Z A=\operatorname{rref}(A)$.
(f) Use the reduced row echelon form above to find a matrix B such that $\operatorname{col}(A)=$ null (B).

Solution.

$$
B=\left(\begin{array}{cccc}
1 & 0 & 9 & 10 \\
0 & 1 & 11 & 12
\end{array}\right)
$$

Write $\operatorname{rref}(A \mid I)=\left(A^{\prime} \mid Z\right)$. Then $A \mathbf{x}=\mathbf{y}$ if and only if $A^{\prime} \mathbf{x}=Z \mathbf{y}$. If $B \mathbf{y}=\mathbf{0}$ then this system is equivalent to

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 3 \\
0 & 0 & 1 & 6
\end{array}\right) \mathbf{x}=\left(\begin{array}{llll}
0 & 0 & 4 & 5 \\
0 & 0 & 7 & 8
\end{array}\right) \mathbf{y}
$$

This definitely has a solution because the matrix on the left is in RREF with a pivot in every row.
(g) Find a basis for $\operatorname{col}(A)$.

Solution.

$$
\left(\begin{array}{c}
-9 \\
-11 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-10 \\
-12 \\
0 \\
1
\end{array}\right)
$$

3. Do Exercise 5.6 of LADW, Chapter 2, $\S 5$: Show that the system of vectors

$$
\mathbf{v}^{1}=\left(\begin{array}{c}
2 \\
-1 \\
1 \\
5 \\
-3
\end{array}\right), \quad \mathbf{v}^{2}=\left(\begin{array}{c}
3 \\
-2 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}^{3}=\left(\begin{array}{c}
1 \\
1 \\
50 \\
-921 \\
0
\end{array}\right)
$$

is linearly independent by completing it to a basis of \mathbb{R}^{5}.
Solution. Add the column vectors \mathbf{e}^{1} and \mathbf{e}^{3}. Then by column operations, can replace \mathbf{v}^{2} with $\frac{1}{2}\left(\mathbf{v}^{2}-3 \mathbf{e}^{1}\right)=\mathbf{e}^{2}$. Then by column operations, we can replace \mathbf{v}^{3} with $\mathbf{e}^{4}=$ $-\frac{1}{921}\left(\mathbf{v}^{3}-\mathbf{e}^{1}-\mathbf{e}^{2}-50 \mathbf{e}^{3}\right)$. Once we have $\mathbf{e}^{1}, \mathbf{e}^{2}, \mathbf{e}^{3}, \mathbf{e}^{4}$, we can get \mathbf{e}^{5} by subtracting multiples of these from \mathbf{v}^{1}. Therefore we have an linearly independent collection, and any subcollection of a linearly independent collection of vectors is independent.

