Handout #2

Math 2135 Spring 2020

Friday, February 21

- 1. Suppose that $f : \mathbf{R} \to \mathbf{R}$ is a polynomial of degree ≤ 2 . Write a formula for f'(0), f'(1), and f'(2) in terms of f(0), f(1), and f(2). The following steps outline a solution to this problem:
 - (a) Find polynomials f^0 , f^1 , and f^2 of degree ≤ 2 such that $f^i(j) = 1$ if i = j and $f^i(j) = 0$ if $i \neq j$. That is we want polynomials f^0 , f^1 , and f^2 such that

$f^0(0) = 1$	$f^1(0) = 0$	$f^2(0) = 0$
$f^0(1) = 0$	$f^{1}(1) = 1$	$f^2(1) = 0$
$f^0(2) = 0$	$f^{1}(2) = 0$	$f^2(2) = 1$

Hint: try (x - 1)(x - 2).

- (b) Prove that $F = \begin{pmatrix} f^0 & f^1 & f^2 \end{pmatrix}$ is a basis of the vector space P_2 of polynomials of degree ≤ 2 . Hint: to solve $g = af^0 + bf^1 + cf^2$, try plugging in x = 0 to both sides.
- (c) Let $X = \begin{pmatrix} 1 & x & x^2 \end{pmatrix}$ be the usual basis of P_2 . Calculate the change of basis matrices $[\mathrm{id}]_X^F$ and $[\mathrm{id}]_F^X$. Hint: the hint for the previous part may help.
- (d) Let $D: P_2 \to P_2$ be the linear transformation that sends $f \in P_2$ to its derivative, f' (with respect to x). Calculate $[F]_X^X$.
- (e) Complete the problem.
- (f) How would you generalize this problem to polynomials of degree $\leq n$?
- 2. (LADW, Chapter 1, Exercise 6.11) Find the matrix (in the standard basis, E) of the transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ that rotates counterclockwise by an angle θ around the vector $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$.
 - (a) Find a basis $X = (\mathbf{x}^1 \ \mathbf{x}^2 \ \mathbf{x}^3)$ of \mathbb{R}^3 such that $[T]_X^X$ is easy to calculate. (Hints: two vectors $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and $\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ are perpendicular if ad + be + cf = 0; the cross product $\begin{pmatrix} bf - ce \\ -af + cd \\ ae - bd \end{pmatrix}$ is always perpendicular to both.)

- (b) Calculate $[T]_X^X$.
- (c) Calculate which ever of the change of basis matrices $[id]_E^X$ and $[id]_X^E$ is easier. You don't have to calculate both.
- (d) Complete the problem in terms of $[\mathrm{id}]_E^X$ and $[\mathrm{id}]_X^E$ and $[T]_X^X$.