Handout \#2

Math 2135 Spring 2020

Friday, February 21

1. Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is a polynomial of degree ≤ 2. Write a formula for $f^{\prime}(0)$, $f^{\prime}(1)$, and $f^{\prime}(2)$ in terms of $f(0), f(1)$, and $f(2)$. The following steps outline a solution to this problem:
(a) Find polynomials f^{0}, f^{1}, and f^{2} of degree ≤ 2 such that $f^{i}(j)=1$ if $i=j$ and $f^{i}(j)=0$ if $i \neq j$. That is we want polynomials f^{0}, f^{1}, and f^{2} such that

$$
\begin{array}{lll}
f^{0}(0)=1 & f^{1}(0)=0 & f^{2}(0)=0 \\
f^{0}(1)=0 & f^{1}(1)=1 & f^{2}(1)=0 \\
f^{0}(2)=0 & f^{1}(2)=0 & f^{2}(2)=1
\end{array}
$$

Hint: $\operatorname{try}(x-1)(x-2)$.
(b) Prove that $F=\left(\begin{array}{lll}f^{0} & f^{1} & f^{2}\end{array}\right)$ is a basis of the vector space P_{2} of polynomials of degree ≤ 2. Hint: to solve $g=a f^{0}+b f^{1}+c f^{2}$, try plugging in $x=0$ to both sides.
(c) Let $X=\left(\begin{array}{lll}1 & x & x^{2}\end{array}\right)$ be the usual basis of P_{2}. Calculate the change of basis matrices $[\mathrm{id}]_{X}^{F}$ and $[\mathrm{id}]_{F}^{X}$. Hint: the hint for the previous part may help.
(d) Let $D: P_{2} \rightarrow P_{2}$ be the linear transformation that sends $f \in P_{2}$ to its derivative, f^{\prime} (with respect to x). Calculate $[F]_{X}^{X}$.
(e) Complete the problem.
(f) How would you generalize this problem to polynomials of degree $\leq n$?
2. (LADW, Chapter 1, Exercise 6.11) Find the matrix (in the standard basis, E) of the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that rotates counterclockwise by angle θ around the vector $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
(a) Find a basis $X=\left(\begin{array}{lll}\mathbf{x}^{1} & \mathbf{x}^{2} \quad \mathbf{x}^{3}\end{array}\right)$ of \mathbb{R}^{3} such that $[T]_{X}^{X}$ is easy to calculate. (Hints: two vectors $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and $\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$ are perpendicular if $a d+b e+c f=0$; the cross product $\left(\begin{array}{c}b f-c e \\ -a f+c d \\ a e-b d\end{array}\right)$ is always perpendicular to both.)
(b) Calculate $[T]_{X}^{X}$.
(c) Calculate whichever of the change of basis matrices $[\mathrm{id}]_{E}^{X}$ and $[\mathrm{id}]_{X}^{E}$ is easier. You don't have to calculate both.
(d) Complete the problem in terms of $[\mathrm{idd}]_{E}^{X}$ and $[\mathrm{id}]_{X}^{E}$ and $[T]_{X}^{X}$.

