Problem 1. Determine whether the following collection of vectors in \mathbb{R}^4 is linearly independent or dependent.

$$\begin{pmatrix} 3\\1\\2\\-4 \end{pmatrix} \quad \begin{pmatrix} 9\\0\\6\\-3 \end{pmatrix} \quad \begin{pmatrix} -3\\-2\\-4\\4 \end{pmatrix} \quad \begin{pmatrix} 7\\6\\0\\3 \end{pmatrix}$$

Warning: a small arithmetic error could lead to an incorrect answer! Try to solve this problem in a way that requires as little arithmetic as possible

Problem 2. Suppose that $\vec{u}^1, \vec{u}^2, \vec{u}^3, \vec{u}^4, \vec{u}^5$ are vectors in \mathbb{R}^4 such that the matrix $M = (\vec{u}^1 \quad \vec{u}^2 \quad \vec{u}^3 \quad \vec{u}^4 \quad \vec{u}^5)$ is row equivalent to the following matrix:

$$\begin{pmatrix}
1 & 0 & 3 & 0 & -5 \\
0 & 1 & -1 & 0 & 6 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Which of the following statements are necessarily true? Explain your answers briefly.

(a) Are the vectors $\vec{u}^1, \vec{u}^2, \vec{u}^3, \vec{u}^4$ are linearly independent? Justify your answer, briefly.

(b) Is it true that $\vec{u}^5 = -5\vec{u}^1 + 6\vec{u}^2 + 3\vec{u}^4$? Justify your answer, briefly.

(c) Find *all* maximal linearly independent subsets of $\{\vec{u}^1, \vec{u}^2, \vec{u}^3, \vec{u}^4, \vec{u}^5\}$. No justification is required.

Problem 3. Suppose that F is a field and that $\vec{u}^1, \ldots, \vec{u}^n$ are vectors in F^m . Let

$$M = \begin{pmatrix} \vec{u}^1 & \vec{u}^2 & \vec{u}^3 & \cdots & \vec{u}^n \end{pmatrix}$$

be the matrix with n rows and m columns whose *i*-th column is \vec{u}^i . For each of the properties on the right in the table below, there is one matrix in the left column that must be equivalent to M by row and column operations. Indicate which matrices correspond to which properties by drawing a line connecting a matrix to the corresponding property.

M is equivalent by row and column operations to	if and only if $\vec{u}^1, \ldots, \vec{u}^m$ are
$ \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} $	linearly dependent and span F^m .
$ \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} $	a basis of F^m .
$ \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix} $	linearly independent and do not span F^m .
$ \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} $	linearly dependent and do not span F^m .

Problem 4. Let V be a vector space over a field F. Suppose that S is a set of vectors in V and that $f: V \to F$ is a linear functional such that $f(\vec{v}) = 0$ for all $\vec{v} \in S$. Let \vec{w} be a vector in V such that $f(\vec{w}) \neq 0$. Prove that \vec{w} is not in the span of S.

Solution. We prove the contrapositive: if $\vec{w} \in \operatorname{span} S$ then $f(\vec{w}) = 0$. Suppose that $\vec{w} \in \operatorname{span} S$. Then $\vec{w} = \sum_{i=1}^{n} a_i \vec{v}^i$ for some $\vec{v}^1, \ldots, \vec{v}^n \in S$ and some $a_1, \ldots, a_n \in F$. Therefore

$$f(\vec{w}) = f(\sum_{i=1}^{n} a_i \vec{v}^i) \qquad \text{substitution for } \vec{w}$$
$$= \sum_{i=1}^{n} a_i f(\vec{v}^i) \qquad f \text{ is linear}$$
$$= \sum_{i=1}^{n} a_i 0 \qquad \vec{v}^i \in S \text{ so } f(\vec{v}^i) = 0 \text{ for all } i$$
$$= 0$$

as requried.