Problem 1. Determine whether the following collection of vectors in \mathbb{R}^{4} is linearly independent or dependent.

$$
\left(\begin{array}{c}
3 \\
1 \\
2 \\
-4
\end{array}\right) \quad\left(\begin{array}{c}
9 \\
0 \\
6 \\
-3
\end{array}\right) \quad\left(\begin{array}{c}
-3 \\
-2 \\
-4 \\
4
\end{array}\right) \quad\left(\begin{array}{l}
7 \\
6 \\
0 \\
3
\end{array}\right)
$$

Warning: a small arithmetic error could lead to an incorrect answer! Try to solve this problem in a way that requires as little arithmetic as possible

Problem 2. Suppose that $\vec{u}^{1}, \vec{u}^{2}, \vec{u}^{3}, \vec{u}^{4}, \vec{u}^{5}$ are vectors in \mathbb{R}^{4} such that the matrix $M=\left(\begin{array}{lllll}\vec{u}^{1} & \vec{u}^{2} & \vec{u}^{3} & \vec{u}^{4} & \vec{u}^{5}\end{array}\right)$ is row equivalent to the following matrix:

$$
\left(\begin{array}{ccccc}
1 & 0 & 3 & 0 & -5 \\
0 & 1 & -1 & 0 & 6 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Which of the following statements are necessarily true? Explain your answers briefly.
(a) Are the vectors $\vec{u}^{1}, \vec{u}^{2}, \vec{u}^{3}, \vec{u}^{4}$ are linearly independent? Justify your answer, briefly.
(b) Is it true that $\vec{u}^{5}=-5 \vec{u}^{1}+6 \vec{u}^{2}+3 \vec{u}^{4}$? Justify your answer, briefly.
(c) Find all maximal linearly independent subsets of $\left\{\vec{u}^{1}, \vec{u}^{2}, \vec{u}^{3}, \vec{u}^{4}, \vec{u}^{5}\right\}$. No justification is required.

Problem 3. Suppose that F is a field and that $\vec{u}^{1}, \ldots, \vec{u}^{n}$ are vectors in F^{m}. Let

$$
M=\left(\begin{array}{lllll}
\vec{u}^{1} & \vec{u}^{2} & \vec{u}^{3} & \cdots & \vec{u}^{n}
\end{array}\right)
$$

be the matrix with n rows and m columns whose i-th column is \vec{u}^{i}. For each of the properties on the right in the table below, there is one matrix in the left column that must be equivalent to M by row and column operations. Indicate which matrices correspond to which properties by drawing a line connecting a matrix to the corresponding property.
M is equivalent by row and column operations to... if and only if $\vec{u}^{1}, \ldots, \vec{u}^{m}$ are...

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right) \\
& \left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \\
& \left.\begin{array}{cccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0
\end{array}\right) \\
& \\
& \left(\begin{array}{cccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \\
0 & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0
\end{array}\right)
\end{aligned}
$$

Problem 4. Let V be a vector space over a field F. Suppose that S is a set of vectors in V and that $f: V \rightarrow F$ is a linear functional such that $f(\vec{v})=0$ for all $\vec{v} \in S$. Let \vec{w} be a vector in V such that $f(\vec{w}) \neq 0$. Prove that \vec{w} is not in the span of S.

Solution. We prove the contrapositive: if $\vec{w} \in \operatorname{span} S$ then $f(\vec{w})=0$. Suppose that $\vec{w} \in \operatorname{span} S$. Then $\vec{w}=\sum_{i=1}^{n} a_{i} \vec{v}^{i}$ for some $\vec{v}^{1}, \ldots, \vec{v}^{n} \in S$ and some $a_{1}, \ldots, a_{n} \in F$. Therefore

$$
\begin{aligned}
f(\vec{w}) & =f\left(\sum_{i=1}^{n} a_{i} \vec{v}^{i}\right) & & \text { substitution for } \vec{w} \\
& =\sum_{i=1}^{n} a_{i} f\left(\vec{v}^{i}\right) & & f \text { is linear } \\
& =\sum_{i=1}^{n} a_{i} 0 & & \vec{v}^{i} \in S \text { so } f\left(\vec{v}^{i}\right)=0 \text { for all } i \\
& =0 & &
\end{aligned}
$$

as requried.

