Problem 1. (i) Compute the determinant of the following matrix:

$$
\left(\begin{array}{ccc}
6 & 15 & 0 \\
1 & 3 & x \\
0 & x+1 & 2
\end{array}\right)
$$

(ii) For which values of x is the above matrix invertible?

Problem 2. Let M be an $n \times n$ matrix of real numbers such that $M^{p}=I_{n}$ for some positive integer n. What are the possible values of $\operatorname{det}(M)$? Justify your answer.

Problem 3. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $[\varphi]_{E}^{E}=\left(\begin{array}{cc}42 & -30 \\ 60 & -43\end{array}\right)$ where $E=\left\{\vec{e}^{1}, \vec{e}^{2}\right\}$ is the standard basis.
(i) Find a basis S of \mathbb{R}^{2} such that $[\varphi]_{S}^{S}$ is diagonal.
(ii) Compute $\left([\varphi]_{E}^{E}\right)^{2019}$. (The entries in the answer have several hundred digits, but you should be able to express each entry succinctly as $a x^{\alpha}+b y^{\beta}$ for some integers a, b, x, y, α, and β.)

Problem 4. Let $\varphi: V \rightarrow V$ be a linear transformation and let \vec{v} and \vec{w} be eigenvectors of φ with eigenvalues λ and μ, respectively. Prove that $\vec{v}+\vec{w}$ is an eigenvector of φ if and only if $\lambda=\mu$.

Problem 5. (i) Let M be an $n \times n$ matrix. The transpose M^{t} of M is the matrix obtained by reflecting M over its diagonal. If the entry in the i-th row and j-th column of M is $a_{i j}$ then the entry in the i-th row and j-th column of M^{t} is $a_{j i}$. Prove that $\operatorname{det} M^{t}=\operatorname{det} M$.
(ii) M is called skew-symmetric if $M^{t}=-M$. Show that every $n \times n$ skew-symmetric matrix M has $\operatorname{det} M=0$ if n is odd.

