Problem 1. (i) Compute the determinant of the following matrix:

$$\begin{pmatrix} 6 & 15 & 0 \\ 1 & 3 & x \\ 0 & x+1 & 2 \end{pmatrix}$$

(ii) For which values of x is the above matrix invertible?

Problem 2. Let M be an $n \times n$ matrix of real numbers such that $M^p = I_n$ for some positive integer n. What are the possible values of det(M)? Justify your answer.

Problem 3. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $[\varphi]_E^E = \begin{pmatrix} 42 & -30 \\ 60 & -43 \end{pmatrix}$ where $E = \{\vec{e}^1, \vec{e}^2\}$

is the standard basis.

- (i) Find a basis S of \mathbb{R}^2 such that $[\varphi]_S^S$ is diagonal.
- (ii) Compute $([\varphi]_E^E)^{2019}$. (The entries in the answer have several hundred digits, but you should be able to express each entry succinctly as $ax^{\alpha} + by^{\beta}$ for some integers a, b, x, y, α , and β .)

Problem 4. Let $\varphi: V \to V$ be a linear transformation and let \vec{v} and \vec{w} be eigenvectors of φ with eigenvalues λ and μ , respectively. Prove that $\vec{v} + \vec{w}$ is an eigenvector of φ if and only if $\lambda = \mu$.

- (i) Let M be an $n \times n$ matrix. The transpose M^t of M is the matrix obtained by reflecting Problem 5. M over its diagonal. If the entry in the *i*-th row and *j*-th column of M is a_{ij} then the entry in the *i*-th row and *j*-th column of M^t is a_{ji} . Prove that det $M^t = \det M$.
- (ii) M is called *skew-symmetric* if $M^t = -M$. Show that every $n \times n$ skew-symmetric matrix M has $\det M = 0$ if n is odd.