Problem 1. For certain bases S and T of R?, one change of basis matrix is given by the following formula:
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Find the other chnage of basis matrix, [id]%.
Problem 2. Let V' be the vector space over R of all functions f: R — R. Let
S = {cos(x), sin(x), cos(2x), sin(2x)}

and let W be the span of S. Let D : W — W be the linear transformation D(f) = %. Find the matrix
[D]2 of D in the basis S (you do not need to prove that D is a basis).

Problem 3. For each of the following linear transformations ¢ : R* — R*, find a basis for ker ¢ and im ¢.
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Problem 4. Let ', %2, @ be the following vectors in R?:
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=11 @2=12 “=11
2 5 3

There is a linear transformation ¢ : R> — R3 with the following properties:

p(i') = o(i*) = u® (i

(i) Find the matrix [¢]3 of ¢ in the basis S = {@*, @2, @} of R3.
(ii) Find the matrix [¢]% of ¢ in the standard basis E = {é', &2, &%} of R3.

(iii) Suppose that T is another, unknown, basis of R? and let M = [p]%. Compute M? (that is, M - M - M)
and justify your answer.

Problem 5. Let U, V, and W be vector spaces over a field F' and let ¢ : V — W and ¢ : U — V be linear
transformations.

(i) Suppose that ¢ is surjective. Prove that im(pt) = im(p).

(ii) Suppose that 1 is bijective. Prove dim ker(pty) = dim ker(p).



