Problem 1. For certain bases S and T of \mathbb{R}^{3}, one change of basis matrix is given by the following formula:

$$
[\mathrm{id}]_{T}^{S}=\left(\begin{array}{ccc}
3 & 0 & 2 \\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right)
$$

Find the other chnage of basis matrix, $[\mathrm{id}]_{S}^{T}$.
Problem 2. Let V be the vector space over \mathbb{R} of all functions $\vec{f}: \mathbb{R} \rightarrow \mathbb{R}$. Let

$$
S=\{\cos (x), \sin (x), \cos (2 x), \sin (2 x)\}
$$

and let W be the span of S. Let $D: W \rightarrow W$ be the linear transformation $D(f)=\frac{d f}{d x}$. Find the matrix $[D]_{S}^{S}$ of D in the basis S (you do not need to prove that D is a basis).

Problem 3. For each of the following linear transformations $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, find a basis for $\operatorname{ker} \varphi$ and $\operatorname{im} \varphi$.
(i) $[\varphi]_{E}^{E}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
(ii) $[\varphi]_{E}^{E}=\left(\begin{array}{cccc}3 & -1 & 2 & 0 \\ -6 & 2 & -4 & 0 \\ 0 & 2 & 1 & -1 \\ 3 & 1 & 3 & -1\end{array}\right)$

Problem 4. Let $\vec{u}^{1}, \vec{u}^{2}, \vec{u}^{3}$ be the following vectors in \mathbb{R}^{3} :

$$
\vec{u}^{1}=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) \quad \vec{u}^{2}=\left(\begin{array}{l}
0 \\
2 \\
5
\end{array}\right) \quad \vec{u}^{3}=\left(\begin{array}{c}
-1 \\
1 \\
3
\end{array}\right)
$$

There is a linear transformation $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with the following properties:

$$
\varphi\left(\vec{u}^{1}\right)=\vec{u}^{2} \quad \varphi\left(\vec{u}^{2}\right)=\vec{u}^{3} \quad \varphi\left(\vec{u}^{3}\right)=\vec{u}^{1}
$$

(i) Find the matrix $[\varphi]_{S}^{S}$ of φ in the basis $S=\left\{\vec{u}^{1}, \vec{u}^{2}, \vec{u}^{3}\right\}$ of \mathbb{R}^{3}.
(ii) Find the matrix $[\varphi]_{E}^{E}$ of φ in the standard basis $E=\left\{\vec{e}^{1}, \vec{e}^{2}, \vec{e}^{3}\right\}$ of \mathbb{R}^{3}.
(iii) Suppose that T is another, unknown, basis of \mathbb{R}^{3} and let $M=[\varphi]_{T}^{T}$. Compute M^{3} (that is, $M \cdot M \cdot M$) and justify your answer.

Problem 5. Let U, V, and W be vector spaces over a field F and let $\varphi: V \rightarrow W$ and $\psi: U \rightarrow V$ be linear transformations.
(i) Suppose that ψ is surjective. Prove that $\operatorname{im}(\varphi \psi)=\operatorname{im}(\varphi)$.
(ii) Suppose that ψ is bijective. Prove $\operatorname{dim} \operatorname{ker}(\varphi \psi)=\operatorname{dim} \operatorname{ker}(\varphi)$.

