Problem 1. Compute the dimension of the subspace V of \mathbb{R}^{5} spanned by the following vectors:

$$
\left(\begin{array}{c}
-2 \\
-4 \\
-4 \\
-3 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
7 \\
2 \\
-1 \\
3 \\
0
\end{array}\right) \quad\left(\begin{array}{c}
4 \\
0 \\
-2 \\
3 \\
2
\end{array}\right) \quad\left(\begin{array}{c}
6 \\
4 \\
2 \\
0 \\
-4
\end{array}\right) \quad\left(\begin{array}{c}
0 \\
4 \\
5 \\
-3 \\
-6
\end{array}\right)
$$

Problem 2. Let $P_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2} \mid a_{i} \in \mathbb{R}\right\}$ be the set of polynomials of degree at most 2 with real coefficients. Here are three linear functionals on P_{2} :

$$
\begin{array}{r}
\vec{\varphi}_{1}(\vec{f})=\vec{f}(-1) \\
\vec{\varphi}_{2}(\vec{f})=\vec{f}^{\prime}(0) \\
\vec{\varphi}_{3}(\vec{f})=\vec{f}(3)
\end{array}
$$

Prove that $\vec{\varphi}_{1}, \vec{\varphi}_{2}$, and $\vec{\varphi}_{3}$ are a basis of P_{2}^{*} and find the basis of P_{2} to which they are dual. (Hint: it is possible do both parts of this problem at the same time if you explain what you are doing!)

Problem 3. Let \mathbb{C} be the set of complex numbers. In this problem, we will view \mathbb{C} as a vector space over \mathbb{R}, with $\overrightarrow{0}=\overrightarrow{0+i 0}$, with $\overrightarrow{a+i b}+\overrightarrow{c+i d}=\overrightarrow{(a+c)+i(b+d)}$, and with $e .(\overrightarrow{a+i b})=\overrightarrow{(e a)+i(e b)}$ for all $a+i b, c+i d \in \mathbb{C}$ and all $e \in \mathbb{R}$.
(i) Prove that \mathbb{C} is an \mathbb{R}-vector space. (Hint: it is possible to do this quickly taking advantage of the known fact that \mathbb{C} is a field containing \mathbb{R}.)
(ii) Let $\operatorname{Re}: \mathbb{C} \rightarrow \mathbb{R}$ be the "real part" function, $\operatorname{Re}(\overrightarrow{a+i b})=a$ and let $\operatorname{Im}: \mathbb{C} \rightarrow \mathbb{R}$ be the "imaginary part" function, $\operatorname{Im}(\overrightarrow{a+i b})=b$. Show that Re and Im are linear functionals.
(iii) Find a basis of \mathbb{C} as a vector space over \mathbb{R} with respect to which $\{\operatorname{Re}, \operatorname{Im}\}$ is the dual basis. Justify your answer!
(iv) What is the dimension of \mathbb{C} as a vector space over \mathbb{R} ? Justify your answer!

Problem 4. Suppose that V is a vector space over a field F and that $\left\{\vec{v}^{1}, \vec{v}^{2}, \vec{v}^{3}, \ldots\right\}$ is a basis of V. This means that the dimension of V is infinite!
(i) Show that, for each i, there is a unique linear functional $\vec{v}_{i}: V \rightarrow F$ such that

$$
\vec{v}_{i}\left(\vec{v}^{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

(ii) Prove that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots\right\}$ is a linearly independent subset of V^{*}.
(iii) Show that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \ldots\right\}$ is not a basis of V^{*}.

