Problem 1. Compute the dimension of the subspace V of \mathbb{R}^5 spanned by the following vectors:

$$\begin{pmatrix} -2 \\ -4 \\ -4 \\ -3 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \\ -1 \\ 3 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \\ -2 \\ 3 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \\ 2 \\ 0 \\ -4 \end{pmatrix} \begin{pmatrix} 0 \\ 4 \\ 5 \\ -3 \\ -6 \end{pmatrix}$$

Problem 2. Let $P_2 = \{a_0 + a_1t + a_2t^2 \mid a_i \in \mathbb{R}\}$ be the set of polynomials of degree at most 2 with real coefficients. Here are three linear functionals on P_2 :

$$\vec{\varphi}_1(\vec{f}) = \vec{f}(-1)$$
$$\vec{\varphi}_2(\vec{f}) = \vec{f}'(0)$$
$$\vec{\varphi}_3(\vec{f}) = \vec{f}(3)$$

Prove that $\vec{\varphi}_1, \vec{\varphi}_2$, and $\vec{\varphi}_3$ are a basis of P_2^* and find the basis of P_2 to which they are dual. (Hint: it is possible do both parts of this problem at the same time if you explain what you are doing!)

Problem 3. Let \mathbb{C} be the set of complex numbers. In this problem, we will view \mathbb{C} as a vector space over \mathbb{R} , with $\vec{0} = \overline{0 + i0}$, with $\vec{a} + i\vec{b} + c + i\vec{d} = (a + c) + i(b + d)$, and with $e.(\vec{a} + i\vec{b}) = (ea) + i(eb)$ for all $a + ib, c + id \in \mathbb{C}$ and all $e \in \mathbb{R}$.

- (i) Prove that C is an ℝ-vector space. (Hint: it is possible to do this quickly taking advantage of the known fact that C is a field containing ℝ.)
- (ii) Let $\operatorname{Re} : \mathbb{C} \to \mathbb{R}$ be the "real part" function, $\operatorname{Re}(\overline{a+ib}) = a$ and let $\operatorname{Im} : \mathbb{C} \to \mathbb{R}$ be the "imaginary part" function, $\operatorname{Im}(\overline{a+ib}) = b$. Show that Re and Im are linear functionals.
- (iii) Find a basis of \mathbb{C} as a vector space over \mathbb{R} with respect to which {Re, Im} is the dual basis. Justify your answer!
- (iv) What is the dimension of \mathbb{C} as a vector space over \mathbb{R} ? Justify your answer!

Problem 4. Suppose that V is a vector space over a field F and that $\{\vec{v}^1, \vec{v}^2, \vec{v}^3, \ldots\}$ is a basis of V. This means that the dimension of V is infinite!

(i) Show that, for each *i*, there is a unique linear functional $\vec{v}_i: V \to F$ such that

$$\vec{v}_i(\vec{v}^j) = \begin{cases} 1 & i=j\\ 0 & i\neq j. \end{cases}$$

- (ii) Prove that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots\}$ is a linearly independent subset of V^* .
- (iii) Show that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots\}$ is **not** a basis of V^* .