Problem 1. Suppose that $\varphi : \mathbb{R}^4 \to \mathbb{R}$ is known to be a linear functional and that

$$\varphi \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = 14 \qquad \varphi \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix} = 9 \qquad \varphi \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix} = 3$$

Compute the following values of φ :

$$\varphi \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \qquad \text{and} \qquad \varphi \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$$

Problem 2. Each of the following describes, either with symbols or a picture, a subset W of \mathbb{R}^2 . Which of these subsets of \mathbb{R}^2 are subspaces? Justify your answers by indicating which properties of a subspace each possesses (you may use the notation from class: a), *), b), c)).

$$\vec{u}^{1} = \begin{pmatrix} 3\\4\\2\\-1 \end{pmatrix}$$
 $\vec{u}^{2} = \begin{pmatrix} -6\\0\\4\\1 \end{pmatrix}$ $\vec{u}^{3} = \begin{pmatrix} 8\\2\\0\\-2 \end{pmatrix}$

Problem 4. Let *P* be the vector space of all polynomials with real coefficients. Define $I : P \to \mathbb{R}$ by the following formula:

$$I(\vec{f}) = \int_{-1}^{1} \vec{f}(x) \, dx$$

Prove that I is a linear functional.

Problem 5. Let V be set of all functions from \mathbb{R} to \mathbb{R} . As discussed in class, V is a vector space over the field \mathbb{R} (you do not need to prove this). Let W be the subset of V consisting of all *nondecreasing* functions. (Recall that f is nondecreasing if $x \leq y$ implies $f(x) \leq f(y)$.) Is W a subspace of V? Justify your answer fully by providing a proof or counterexample to each of the properties required of a subspace.

Problem 6. Let V be a vector space over the field F. Let W be the vector space of all functions from V to F. Let V^* be the set of all linear functionals on V. Prove that V^* is a subspace of W.