Problem 1. Suppose that $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is known to be a linear functional and that

$$
\varphi\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=14 \quad \varphi\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=9 \quad \varphi\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=3
$$

Compute the following values of φ :

$$
\varphi\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad \varphi\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Problem 2. Each of the following describes, either with symbols or a picture, a subset W of \mathbb{R}^{2}. Which of these subsets of \mathbb{R}^{2} are subspaces? Justify your answers by indicating which properties of a subspace each possesses (you may use the notation from class: a), *), b), c)).

1. \mathbb{R}^{2}

3.
4. \varnothing
5.

6. \longleftrightarrow (

Problem 3. Find a nonzero row vector \vec{a} in \mathbb{R}_{4} such that $\operatorname{ker}(\vec{a})$ contains all of the following three vectors:

$$
\vec{u}^{1}=\left(\begin{array}{c}
3 \\
4 \\
2 \\
-1
\end{array}\right) \quad \vec{u}^{2}=\left(\begin{array}{c}
-6 \\
0 \\
4 \\
1
\end{array}\right) \quad \vec{u}^{3}=\left(\begin{array}{c}
8 \\
2 \\
0 \\
-2
\end{array}\right)
$$

Problem 4. Let P be the vector space of all polynomials with real coefficients. Define $I: P \rightarrow \mathbb{R}$ by the following formula:

$$
I(\vec{f})=\int_{-1}^{1} \vec{f}(x) d x
$$

Prove that I is a linear functional.

Problem 5. Let V be set of all functions from \mathbb{R} to \mathbb{R}. As discussed in class, V is a vector space over the field \mathbb{R} (you do not need to prove this). Let W be the subset of V consisting of all nondecreasing functions. (Recall that f is nondecreasing if $x \leq y$ implies $f(x) \leq f(y)$.) Is W a subspace of V ? Justify your answer fully by providing a proof or counterexample to each of the properties required of a subspace.

Problem 6. Let V be a vector space over the field F. Let W be the vector space of all functions from V to F. Let V^{*} be the set of all linear functionals on V. Prove that V^{*} is a subspace of W.

