A is an $m \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$	\mathbb{R}^m is the linear transformation $T(\mathbf{x}) = A\mathbf{x}$.	The two columns show equivalent
properties of A and T :		

There is a $n \times m$ matrix C such that $CA = I_n$	There is a $n \times m$ matrix D such that $AD = I_m$	
$\mathrm{Nul}(C) = \{0\}$	$\operatorname{Col}(C) = \mathbb{R}^m$	
T is one-to-one	T is onto	
$\operatorname{rref}(A)$ has a pivot in every column	$\operatorname{rref}(A)$ has a pivot in every row	
$\operatorname{rref}(A)$ has n pivots	$\operatorname{rref}(A)$ has m pivots	
$\dim \operatorname{Nul}(A) = 0$	$\dim \operatorname{Col}(A) = m$	
$\operatorname{rank}(A) = n$	$\operatorname{rank}(A) = m$	
the only solution to $A\mathbf{x} = 0$ is $\mathbf{x} = 0$	for every b in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x}	
the columns of A are linearly independent	the columns of A span \mathbb{R}^m	
A has an invertible $n \times n$ submatrix	A has an invertible $m \times m$ submatrix	
A has a nonzero $n \times n$ minor	A has a nonzero $m \times m$ minor	

Some study advice: make sure you understand why all of the properties in each column are equivalent.