A is an $m \times n$ matrix and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the linear transformation $T(\mathbf{x})=A \mathbf{x}$. The two columns show equivalent properties of A and T :

There is a $n \times m$ matrix C such that $C A=I_{n}$	There is a $n \times m$ matrix D such that $A D=I_{m}$
$\operatorname{Nul}(C)=\{\mathbf{0}\}$	$\operatorname{Col}(C)=\mathbb{R}^{m}$
T is one-to-one	T is onto
$\operatorname{rref}(A)$ has a pivot in every column	$\operatorname{rref}(A)$ has a pivot in every row
$\operatorname{rref}(A)$ has n pivots	$\operatorname{rref}(A)$ has m pivots
$\operatorname{dim} \operatorname{Nul}(A)=0$	$\operatorname{dim} \operatorname{Col}(A)=m$
$\operatorname{rank}(A)=n$	$\operatorname{rank}(A)=m$
the only solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=0$	for every \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}
the columns of A are linearly independent	the columns of A span \mathbb{R}^{m}
A has an invertible $n \times n$ submatrix	A has an invertible $m \times m$ submatrix
A has a nonzero $n \times n$ minor	A has a nonzero $m \times m$ minor

Some study advice: make sure you understand why all of the properties in each column are equivalent.

