Graded Problem Set 3

Math 2130 - Fall 2022

due Friday, 2 December

1. Let A be the matrix $\left(\begin{array}{ll}5 & 2 \\ 2 & 5\end{array}\right)$.
(a) Compute the eigenvectors and eigenvalues of A.

Solution. The characteristic polynomial is
$\operatorname{det}\left(\begin{array}{cc}5-\lambda & 2 \\ 2 & 5-\lambda\end{array}\right)=(5-\lambda)(5-\lambda)-4=\lambda^{2}-10 \lambda+21=(\lambda-7)(\lambda-3)$
so the eigenvalues are 7 and 3 . Since $A-3 I$ is rank 1 , its columns are eigenvectors of A with eigenvalue 7 . Therefore the 7 -eigenspace of A is spanned by $\binom{2}{2}$. Similarly, the 3 -eigenspace is spanned by $\binom{2}{-2}$. We can divide by 2 to get simpler eigenvectors.
(b) Compute A^{2022}.

Solution. Let $X=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ and let $\Lambda=\left(\begin{array}{ll}7 & 0 \\ 0 & 3\end{array}\right)$. Then $A X=$ $X \Lambda$. So $A=X \Lambda X^{-1}$ and $A^{2022}=X \Lambda^{2022} X^{-1}$. The inverse of X is

$$
X^{-1}=\frac{1}{\operatorname{det}(X)}\left(\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\frac{1}{2} X .
$$

Therefore

$$
\begin{aligned}
A^{2022} & =X \Lambda^{2022} X^{-1}=\frac{1}{2} X \Lambda^{2022} X \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
7^{2022} & 0 \\
0 & 3^{2022}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
7^{2022} & 7^{2022} \\
3^{2022} & -3^{2022}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
7^{2022}+3^{2022} & 7^{2022}-3^{2022} \\
7^{2022}-3^{2022} & 7^{2022}+3^{2022}
\end{array}\right)
\end{aligned}
$$

(c) There are two possibilities for $\lim _{n \rightarrow \infty} \frac{A^{n} \vec{v}}{\left\|A^{n} \vec{v}\right\|}$ when \vec{v} is not an eigenvector of A. (In other words, which direction can the vectors $A^{n} \vec{v}$ approach as n becomes large?)
Solution. We could write \vec{v} as $a \vec{x}_{1}+b \vec{x}_{2}$ where $\vec{x}_{1}=\binom{1}{1}$ and $\vec{x}_{2}=\binom{1}{-1}$. Then $A \vec{v}=a\left(7^{n}\right) \vec{x}_{1}+b\left(3^{n}\right) \vec{x}_{2}$. Then $\lim _{n \rightarrow \infty} \frac{a\left(7^{n}\right) \vec{x}_{1}+b\left(3^{n}\right) \vec{x}_{2}}{\left\|a\left(7^{n}\right) \vec{x}_{1}+b\left(3^{n}\right) \vec{x}_{2}\right\|}=\lim _{n \rightarrow \infty} \frac{a \vec{x}_{1}+b(3 / 7)^{n} \vec{x}_{2}}{\left\|a \vec{x}_{1}+b(3 / 7)^{n} \vec{x}_{2}\right\|}=\frac{a \vec{x}_{1}}{\left\|a \vec{x}_{1}\right\|}= \pm \frac{\vec{x}_{1}}{\left\|\vec{x}_{1}\right\|}$.
That is, depending on whether a is positive or negative, the limit either points in the direction of \vec{x}_{1} or opposite it.
2. Let $\vec{u}=\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)$ and let $\vec{v}=\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)$. Compute the eigenvectors and eigenvalues of the 3×3 matrix $A=\vec{u} \vec{v}^{T}$.
Solution. Since A has rank 1, its null space is 2-dimensional. It consists of the vectors perpendicular to \vec{v}, and these are spanned by $\left(\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-5 \\ 0 \\ 1\end{array}\right)$.
The vector \vec{u} is also an eigenvector since $A \vec{u}=\left(\vec{v}^{T} \vec{u}\right) \vec{u}$. Its eigenvalue is $\vec{v}^{T} \vec{u}=1(2)+3(4)+5(6)=44$.
3. Suppose that A and B are square matrices and that \vec{x} is an eigenvector of A with eigenvalue 3 and an eigenvector of B with eigenvalue 5 . Explain why \vec{x} is also an eigenvector of $A^{4}+A B A^{2}$ and compute its eigenvalue.
Solution.

$$
\left(A^{4}+A B A^{2}\right) \vec{x}=\left(3^{4}+3(5)\left(3^{2}\right)\right)=27(8)=216
$$

4. Let W be the plane in \mathbb{R}^{3} spanned by the vectors $\vec{u}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and $\vec{v}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)$. Let A be the matrix that reflects vectors across W.
(a) Find a nonzero vector \vec{x} that is perpendicular to W.

Solution. $\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right) \square$
(b) Find the eigenvalues and eigenvectors of A.

Solution. Since \vec{u} and \vec{v} are in W, they are fixed by the reflection, so they are eigenvectors with eigenvalue 1 . Since \vec{x} is perpendicular to W, it is an eigenvector with eigenvalue -1 .
Let X be the eigenbasis matrix $X=\left(\begin{array}{lll}\vec{u} & \vec{v} & \vec{x}\end{array}\right)$. Let $\Lambda=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$.
We have $A X=X \Lambda$ so $A=X \Lambda X^{-1}$.
(c) (Optional) Compute the matrix of A using the projection onto the plane W or using the projection onto the line W^{\perp}.
Solution. The projection on W^{\perp} is given by the matrix $\frac{\vec{x} \vec{x}^{T}}{\vec{x}^{T} \vec{x}}$. The projection on W is therefore $I-\frac{\vec{x} \vec{x}^{T}}{\overrightarrow{\vec{x}} \vec{x}^{T}}$. The reflection is the difference of projection on W and projection on W^{\perp} so the formula is $I-2 \frac{\vec{x} \vec{x}^{T}}{\vec{x}^{T} \vec{x}}$.
5. For which values of c is $A=\left(\begin{array}{ll}3 & 2 \\ c & 4\end{array}\right)$
(i) diagonalizable by a real change of coordinates;
(ii) diagonalizable by a non-real complex change of coordinates;
(iii) not diagonalizable?

Solution. The characteristic polynomial is $(3-\lambda)(4-\lambda)-2 c=\lambda^{2}-$ $7 \lambda+12-2 c$. The discriminant of this polynomial is $49-4(12-2 c)=$ $1+8 c$. This is positive when $c>\frac{-1}{8}$, in which case we get two distinct real eigenvalues and therefore the matrix is diagonalizable by a real change of coordinates. If $c<\frac{-1}{8}$ then we get two distinct complex eigenvalues and the matrix is diagonalizable by a non-real complex change of coordinates. If $c=\frac{-1}{8}$ then the quadratic formula gives the repeated eigenvalue $\lambda=\frac{7}{2}$.
The $\frac{7}{2}$ eigenspace is

$$
N\left(\begin{array}{cc}
3-\frac{7}{2} & 2 \\
-\frac{1}{8} & 4-\frac{7}{2}
\end{array}\right)=N\left(\begin{array}{cc}
-\frac{1}{2} & 2 \\
-\frac{1}{8} & \frac{1}{2}
\end{array}\right)
$$

since this matrix is rank 1 , we will have a 1-dimensional eigenspace in this case, and the matrix will not be diagonalizable.

