Handout 5

Math 2130 - Fall 2022
4 December, 2022

1. The matrix A has right eigenvector \vec{x} with eigenvalue λ (that is, $A \vec{x}=\lambda \vec{x}$) and left eigenvector \vec{y} with eigenvalue μ (that is, $\vec{y}^{T} A=\mu \vec{y}^{T}$). Assume that $\lambda \neq \mu$. What is $\vec{y}^{T} \vec{x}$? What is the angle between \vec{x} and \vec{y} ?
2. What does the previous problem tell you about the angles between eigenvectors of symmetric matrices? Does your answer still apply if there are repeated eigenvalues?
3. If A is an $n \times m$ matrix and $\operatorname{dim} N(A)=k$, what is $\operatorname{dim} N\left(A^{T}\right)$?
4. If A is a square matrix and the λ-eigenspace of A has dimension k, what is the dimension of the λ-eigenspace of A^{T} ?
5. Give an example of a 2×2 matrix that is not diagonalizable (even using complex numbers).
6. Suppose that A is a 2×2 matrix with repeated eigenvalue 3 . Let \vec{x}_{1} be an eigenvector of A with eigenvalue 3 and let \vec{x}_{2} be any vector in \mathbb{R}^{2} that is independent of \vec{x}_{1}. Let $X=\left(\begin{array}{ll}\vec{x}_{1} & \vec{x}_{2}\end{array}\right)$. Determine as many entries of $X^{-1} A X$ as possible.
7. Find the matrix that rotates space by $\pi / 3$ counterclockwise around the vector $\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)$. (Hint: find the eigenvectors and eigenvalues first.)
8. Suppose that A and B are 3×3 matrices and $A B=B A$. If A has eigenvalues 1,2 , and 3 and B has eigenvalues 4,5 , and 6 , what are the possibilities for the eigenvalues of $A B$? Explain your answer.
9. Compute the reduced row echelon form of the following matrix:

$$
\left(\begin{array}{c}
1 \\
3 \\
5 \\
7 \\
9 \\
11 \\
13 \\
15 \\
17 \\
19
\end{array}\right)\left(\begin{array}{lllllllll}
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}\right)
$$

10. Find a 4×4 Markov matrix A such that the graph of A is connected and $N(A-I)$ is 3 dimensional. (Hint: find the graph of A first.)
11. Suppose that P is a square matrix such that $P^{4}=I$. What are the possible eigenvalues of P ? Explain both the real and complex eigenvalues.
12. The matrix P performs orthogonal projection onto a subspace of \mathbb{R}^{4}. There is a 4×4 matrix X such that $X^{-1} P X$ is diagonal. Write down all possibilities for $X^{-1} P X$. Remember, $\{\overrightarrow{0}\}$ and \mathbb{R}^{4} are subspaces of \mathbb{R}^{4}.
