Handout 5

Math 2130 — Fall 2022

4 December, 2022

- 1. The matrix A has right eigenvector \vec{x} with eigenvalue λ (that is, $A\vec{x} = \lambda \vec{x}$) and left eigenvector \vec{y} with eigenvalue μ (that is, $\vec{y}^T A = \mu \vec{y}^T$). Assume that $\lambda \neq \mu$. What is $\vec{y}^T \vec{x}$? What is the angle between \vec{x} and \vec{y} ?
- 2. What does the previous problem tell you about the angles between eigenvectors of symmetric matrices? Does your answer still apply if there are repeated eigenvalues?
- 3. If A is an $n \times m$ matrix and dim N(A) = k, what is dim $N(A^T)$?
- 4. If A is a square matrix and the λ -eigenspace of A has dimension k, what is the dimension of the λ -eigenspace of A^T ?
- 5. Give an example of a 2×2 matrix that is not diagonalizable (even using complex numbers).
- 6. Suppose that A is a 2 × 2 matrix with repeated eigenvalue 3. Let \vec{x}_1 be an eigenvector of A with eigenvalue 3 and let \vec{x}_2 be any vector in \mathbb{R}^2 that is independent of \vec{x}_1 . Let $X = (\vec{x}_1 \ \vec{x}_2)$. Determine as many entries of $X^{-1}AX$ as possible.
- 7. Find the matrix that rotates space by $\pi/3$ counterclockwise around the vector $\begin{pmatrix} 2\\3\\5 \end{pmatrix}$. (Hint: find the eigenvectors and eigenvalues first.)
- 8. Suppose that A and B are 3×3 matrices and AB = BA. If A has eigenvalues 1, 2, and 3 and B has eigenvalues 4, 5, and 6, what are the possibilities for the eigenvalues of AB? Explain your answer.

9. Compute the reduced row echelon form of the following matrix:

$$\begin{pmatrix} 1\\3\\5\\7\\9\\11\\13\\15\\17\\19 \end{pmatrix} (9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1)$$

- 10. Find a 4×4 Markov matrix A such that the graph of A is connected and N(A I) is 3 dimensional. (Hint: find the graph of A first.)
- 11. Suppose that P is a square matrix such that $P^4 = I$. What are the possible eigenvalues of P? Explain both the real and complex eigenvalues.
- 12. The matrix P performs orthogonal projection onto a subspace of \mathbb{R}^4 . There is a 4×4 matrix X such that $X^{-1}PX$ is diagonal. Write down all possibilities for $X^{-1}PX$. Remember, $\{\vec{0}\}$ and \mathbb{R}^4 are subspaces of \mathbb{R}^4 .