Exam 3 Preview

Math 2130 - Fall 2022

2 November, 2022

1. The following matrix has orthonormal columns but has some unknown entries, labelled with an asterisk $(*)$. Write down as many entries of its cofactor matrix as you can.

$$
A=\left(\begin{array}{cccc}
\frac{1}{3} & * & \frac{2}{7} & * \\
-\frac{1}{4} & * & * & \frac{3}{8} \\
* & * & \frac{2}{5} & \frac{1}{4} \\
* & \frac{1}{2} & * & *
\end{array}\right)
$$

2. Suppose that A is a square matrix whose entries are all integers. For what values of $\operatorname{det}(A)$ does A have an invese whose entries are all integers? Explain your answer.
3. The following matrix has n rows and n columns, following the pattern begun below. Compute $\operatorname{det}\left(A_{100}\right)$.

$$
A_{n}=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & \ldots \\
-1 & 1 & -1 & 0 & \ldots \\
0 & -1 & 1 & -1 & \ldots \\
0 & 0 & -1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

4. For what values of c is the following matrix invertible?

$$
\left(\begin{array}{ccc}
16 & 12 & -12 \\
-13 & -6 & 11 \\
3 & 6 & -1
\end{array}\right)-c I
$$

5. In this problem $A=\left(\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right)$ is an unknown 3×3 matrix with determinant 5 . Let \vec{x} be the following vector

$$
\vec{x}=\left(\begin{array}{c}
3 \\
-4 \\
2
\end{array}\right)
$$

and let $\vec{b}=A \vec{x}$. Compute the determinant of the matrix $\left(\begin{array}{lll}\vec{b} & \vec{v}_{3} & \vec{v}_{1}\end{array}\right)$.
6. In this problem, A will be the 2×4 matrix shown below and B will be an unknown 4×2 matrix.

$$
A=\left(\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & -1 & 2 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right)
$$

What we know about B are the determinants of its 2×2 minors:

$$
\begin{array}{rlrl}
\operatorname{det}\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right)=0 & \operatorname{det}\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right)=3 & \operatorname{det}\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right)=0 \\
\operatorname{det}\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right) & =-2 & \operatorname{det}\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right)=0 & \operatorname{det}\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32} \\
b_{41} & b_{42}
\end{array}\right)=5
\end{array}
$$

Calculate the determinant of B.
7. (Challenge problem) Find a relationship between the 2×2 minors of all 2×4 matrices.

