Theorem 1. Let ℓ , m, and n be integers such that the following inequalities hold:

I1: $m \ge 0$ **I2:** $n \ge 0$ **I3:** $\ell \ge m$ **I4:** $\ell \ge n$ **I5:** $\ell \le m + n$

Then there are sets A and B such that |A| = n and |B| = m and $|A \cup B| = \ell$.

Proof:

We choose the following sets for A and B:

$$A = \{1, 2, \dots, n\}$$

$$B = \{n + 1, n + 2, \dots, \ell, 1, 2, \dots, m + n - \ell\}$$

To complete the proof, we have to check that A, B, and $A \cup B$ have the right sizes. We can see that

|A| = n

since A contains the first n positive integers.

We can also see that

$$|B| = (\ell - n) + (m + n - \ell) = m$$

since B contains the $\ell - n$ integers between n + 1 and ℓ , inclusive, and the first $m + n - \ell$ integers.

To compute $|A \cup B|$, first we write out the elements of $A \cup B$:

$$A \cup B = \{1, 2, \dots, n, n+1, n+2, \dots, \ell, 1, 2, \dots, m+n-\ell\}$$

The elements $1, 2, \ldots, m + n - \ell$ are listed twice,

so we can remove the second appearance:

$$A \cup B = \{1, 2, \dots, \ell\}.$$

Thus $A \cup B$ consists of the first ℓ positive integers, so it has size ℓ . This completes the proof.