Problem 1. Prove by contradiction that the sum of a rational number and an irrational number cannot be rational.

Problem 2. How many ways are there to rearrange the list (1, 2, 3, 4, 5) such that each of 1, 3, and 5 does not wind up in the same place?

- A) 2
- B) 45
- C) 48
- D) 64
- E) 120

Solution. The answer is 64. Let S be the set of rearrangements of the list (1, 2, 3, 4, 5). This contains 5! = 120 elements. Let A_i be the subset of rearrangements that hold *i* in place. Then we want to count $|S - A_1 - A_3 - A_5|$. We can try to compute this number as

$$|S| - |A_1| - |A_3| - |A_5|$$

but then we will have subtracted everything in $A_1 \cap A_3$, $A_1 \cap A_5$ and $A_3 \cap A_5$ twice. We can try adding those back in:

$$|S| - |A_1| - |A_3| - |A_5| + |A_1 \cap A_3| + |A_1 \cap A_5| + |A_1 \cap A_3|$$

Now if $x \in A_1 \cap A_3$ and $x \notin A_5$ it will be counted

1 - 1 - 1 + 1 = 0

times, but if $x \in A_1 \cap A_3 \cap A_5$, it will be counted

$$1 - 1 - 1 - 1 + 1 + 1 + 1 = 1$$

times. To correct for this, we subtract off $|A_1 \cap A_3 \cap A_5|$ and get

$$|S| - |A_1| - |A_3| - |A_5| + |A_1 \cap A_3| + |A_1 \cap A_5| + |A_3 \cap A_5| - |A_1 \cap A_3 \cap A_5|.$$

To conclude, we should compute these values. The size of A_i is 4!; the size of $A_i \cap A_j$ is 3! if $i \neq j$. And the size of $A_1 \cap A_3 \cap A_5$ is 2! = 2. Therefore the number of rearrangements that move 1 and 3 and 5 is

$$5! - 3 \times 4! - 3 \times 3! + 2! = 64$$

Problem 3. Suppose that S is a set and that for every $s \in S$ we have a set A_s . For every subset $T \subset S$, let us define

$$A_T = \bigcap_{t \in T} A_t.$$

Suppose that $s \in S$. Express, in terms of |S| and the ordinary operations of arithmetic, the number of $T \subset S$ such that $s \in A_T$. How many of these T have an even and how many have an odd number of elements?

Solution. The number is $2^{|S|-1}$ if $S \neq \emptyset$ and it is 0 if $S = \emptyset$. The numbers with even and odd sizes are both $2^{|S|-2}$ if $|S| \ge 2$. If |S| = 1 there is one odd-sized T and no even-sized T-s. If |S| = 0 then the numbers of odd- and even-sized T-s are both zero.

Problem 4. Find a statement of the inclusion-exclusion principle for an arbitrary number of sets that does not rely on ellipses.

Problem 5. Prove that

$$\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{n-m}{k-m}.$$

Solution. How many ways are there to partition a set S with n elements into three subsets A, B, and C with sizes |A| = a, |B| = b, and |C| = c. Let's assume that a + b + c = n. Let's write a = m and k = a + b. We can first choose $A \cup B$ from S, for which there are $\binom{n}{k}$ possibilities, and then we can choose A from $A \cup B$, for which there are $\binom{k}{m}$ possibilities. This gives a total of $\binom{n}{k}\binom{k}{m}$ ways.

Or we could first choose A, for which there are $\binom{n}{m}$ possibilities and then choose B from S - A. Since |S - A| = n - m and |B| = k - m, there are $\binom{n-m}{k-m}$ possibilities for B once A has been chosen. This makes a total of $\binom{n}{m}\binom{n-m}{k-m}$ possibilities.

Problem 6. (i) Prove that a product of odd numbers is odd.

(ii) Prove that if x is an integer such that $2|x^2$ then 2|x.

Problem 7. A number is called *rational* if it can be expressed as u/v where u and v are integers (and $v \neq 0$). Prove by contradiction that $\sqrt{2}$ is not rational. You may use the following fact about the number 2: If x is an integer and $2|x^2$ then 2|x. (Hint: Choose u to be the smallest positive integer such that there is a positive integer v with $u/v = \sqrt{2}$ and find a contradiction.)

Solution. Choose u and v as in the hint. If $\sqrt{2} = u/v$ then $u^2 = 2v^2$. Then $2|u^2$ so 2|u. But this means u = 2w for some positive integer w so that $2w^2 = v^2$. Then $2|v^2$ so 2|v so v = 2x for some positive integer x. Therefore $w^2 = 2v^2$ so $w/v = \sqrt{2}$. But w < u so this contradicts the assumption that u was the smallest positive integer such that $\sqrt{2} = u/v$ for some positive integer v. \Box

Problem 8. Use a proof by contradiction to prove that there are infinitely many prime numbers.