Problem 1. How many of the integers x with $1 \le x \le 120$ are divisible by at least one of 2 or 5?

Solution. The correct answer is 72.

Problem 2. How many of the integers x with $1 \le x \le 120$ are divisible by at least one of 2, 3, or 5?

A) 4 B) 40 C) 76 D) 108 E) 112

Solution. The correct answer is 88.

Problem 3. How many ways are there to rearrange the list (1, 2, 3, 4, 5) such that 1, 3, and 5 do not wind up in the same place?

A) 2! = 2B) $5! - 5 \times 4! + 10 \times 3! - 10 \times 2! + 5 \times 1! = 120 - 120 + 60 - 20 + 5 = 45$ C) $5! - 3 \times 4! = 120 - 72 = 48$ D) $5! - 3 \times 4! + 3 \times 3! - 2! = 120 - 72 + 18 - 2 = 64$ E) 5! = 120

Solution. The answer is 64. Let S be the set of rearrangements of the list (1, 2, 3, 4, 5). This contains 5! = 120 elements. Let A_i be the subset of rearrangements that hold *i* in place. Then we want to count $|S - A_1 - A_3 - A_5|$. We can try to compute this number as

$$|S| - |A_1| - |A_3| - |A_5|$$

but then we will have subtracted everything in $A_1 \cap A_3$, $A_1 \cap A_5$ and $A_3 \cap A_5$ twice. We can try adding those back in:

 $|S| - |A_1| - |A_3| - |A_5| + |A_1 \cap A_3| + |A_1 \cap A_5| + |A_1 \cap A_3|$

Now if $x \in A_1 \cap A_3$ and $x \notin A_5$ it will be counted

1 - 1 - 1 + 1 = 0

times, but if $x \in A_1 \cap A_3 \cap A_5$, it will be counted

1 - 1 - 1 - 1 + 1 + 1 + 1 = 1

times. To correct for this, we subtract off $|A_1 \cap A_3 \cap A_5|$ and get

$$|S| - |A_1| - |A_3| - |A_5| + |A_1 \cap A_3| + |A_1 \cap A_5| + |A_3 \cap A_5| - |A_1 \cap A_3 \cap A_5|.$$

To conclude, we should compute these values. The size of A_i is 4!; the size of $A_i \cap A_j$ is 3! if $i \neq j$. And the size of $A_1 \cap A_3 \cap A_5$ is 2! = 2. Therefore the number of rearrangements that move 1 and 3 and 5 is

$$5! - 3 \times 4! - 3 \times 3! + 2! = 64.$$

Problem 4. Let S be a set with three subsets A, B, and C. Suppose that x is an element of S. How many of the sets

$$A, B, C, A \cap B, A \cap C, B \cap C, A \cap B \cap C$$

could contain x? Answer as precisely as possible.

- A) 1
- B) 1 or 7
- C) 1, 3, or 7
- D) an odd number
- E) Any number between 1 and 7

Solution. The correct answer is 1, 3 or 7. If x is in just one of A, B, or C then the number is 1. If x is in two of them then the answer is 3. If x is in all three then the answer is 7. \Box

Problem 5. Suppose that S is a set and that for every $s \in S$ we have a set A_s . For every subset $T \subset S$, let us define

$$A_T = \bigcap_{t \in T} A_t.$$

Suppose that $s \in S$. Express, in terms of |S| and the ordinary operations of arithmetic, the number of $T \subset S$ such that $s \in A_T$. How many of these T have an even and how many have an odd number of elements?

Solution. The number is $2^{|S|-1}$ if $S \neq \emptyset$ and it is 0 if $S = \emptyset$. The numbers with even and odd sizes are both $2^{|S|-2}$ if $|S| \ge 2$. If |S| = 1 there is one odd-sized T and no even-sized T-s. If |S| = 0 then the numbers of odd- and even-sized T-s are both zero.