Problem 1. Compute $\binom{100}{99}$.

 A) 1
 B) 99
 C) 100
 D) 100!
 E) None of these

Problem 2. For any positive integers n, a, and b with 0 < a < b < n we have $\binom{n}{a} < \binom{n}{b}$.

A) True B) False

Problem 3. Suppose that S is a set with n elements and R is an equivalence relation on S. What is the largest the number of equivalence classes of R could possibly be?

A) 1 B) n C) 2^n D) n! E) None of these

Solution. The answer is n. Every equivalence class has to contain at least one element of S.

Problem 4. How many distinct rearrangements are there of the letters of my name, JONATHAN?

A) 1 B) 8 C) $2 \times 7!$ D) 8! E) None of these

Solution. Consider rearrangements where the two *n*-s are labelled N_1 and N_2 and the two *a*-s are labelled A_1 and A_2 . There are 8! of these, since all of the letters are distinct. Then partition these into equivalence classes based on $N_1 \equiv N_2$ and $A_1 \equiv A_2$. Each equivalence class has 4 elements so the total number of rearrangements is $8!/4 = 7! \times 8/4 = 7! \times 2$.

Problem 5. Let S be a set with n elements. How many ways are there to partition S into two subsets.

A) 1 B) n C) $2^n - 2$ D) 2^n E) None of these

Solution. One subset is the complement of the other, so this is the same as choosing a non-empty subset of S whose complement is also non-empty. The answer is therefore $2^n - 2$ for $n \ge 2$ and it is 0 when n = 0 or n = 1.

Problem 6. Let S be a set. Construct a one-to-one correspondence between the set of partitions of S and the set of equivalence relations on S.

Problem 7. Let *S* be a set with *n* elements and let *a*, *b*, and *c* be three positive integers with a + b + c = n. You may assume that *a*, *b*, and *c* are all different numbers. Devise a formula using addition, subtraction, multiplication, division, exponentiation, and the factorial for the number of partitions of *S* into three subsets of sizes *a*, *b*, and *c*.

Solution.
$$\binom{n}{a}\binom{n-a}{b} = \frac{n!}{a!b!c!}$$

Problem 8. How does your formula from the last problem change when $a = b \neq c$? What about when a = b = c?