Problem 1. Which set is larger?

A) N B) R C) They are the same size D) The question doesn't make sense

Problem 2. A finite probability space (or finite sample space) is a pair (S, P) where S is a set and $P: S \to \mathbb{R}$ is a function such that

(i) $P(x) \ge 0$ for all $x \in S$, and

(ii) $\sum_{x \in S} P(x) = 1$.

Which of the following are possible if (S, P) is a finite probability space?

- A) |S| = 0
- B) |S| = 1
- C) $|S| = \infty$
- D) More than one of the above
- E) None of the above

Problem 3. Proving $(X \text{ AND } Y) \implies Z$ is equivalent to proving which of the following? Answer according to the following rule:

A) It is equivalent B) It is not equivalent

(i)
$$(X \implies Z)$$
 AND $(Y \implies Z)$

(ii)
$$(NOT Z) \implies ((NOT X) OR (NOT Y))$$

- (iii) $(X \implies Z) \text{ or } (Y \implies Z)$
- (iv) $Z \implies (X \text{ and } Y)$
- (v) (NOT X) OR (NOT Y) OR Z

Problem 4. Which of the choices below is the logical negation of the sentence below?

$$\forall x, (P(x) \implies S)$$

- (i) $\exists x, ((\text{NOT } P(x)) \text{ and } S)$
- (ii) $\exists x, (P(x) \text{ and } (\text{not } S))$
- (iii) $\forall x, (P(x) \implies (\text{NOT } S))$
- (iv) NOT $(\forall y, (P(y) \implies S))$
- (v) (NOT S) AND $(\exists x, P(x))$

Problem 5. Fix a non-negative integer n. Formulate a conjecture about the number of permutations of the set $\{1, 2, \ldots, n\}$ that have exactly two cycles.

Problem 6. Suppose that a, b, and n are integers such that $0 \le a < n$ and $0 \le b < n$. Prove that $a \equiv b \pmod{n}$ if and only if a = b.

Problem 7. Prove that every integer is either even or odd but not both.

Problem 8. Let S be a set, let T be a subset of S, and let P(x) be sentence depending on an element $x \in S$. Suppose that the sentence $\forall x \in S, P(x)$ is false. Determine which of the following are true.

- (i) $\exists x \in T$, (NOT P(x))
- (ii) $\forall x \in T$, (NOT P(x))
- (iii) NOT $\forall x \in T, P(x)$

Problem 9. Same setting as last problem. How would you *disprove* the sentence $(\forall x \in S, P(x))$ AND $(\forall x \in T, P(x))$?

Problem 10. Write a symbolic logical sentence that is equivalent to $\exists !x, P(x)$ without using the ! notation.

Problem 11. Prove that, for any non-negative integer n, either \sqrt{n} is an integer or it is irrational.