Problem 1. Is $\{\{1\}, \{2,3\}, \{5\}\}$ a partition? A) Yes B) No C) Of what?

Problem 2. How many partitions are there of the empty set? A) 0 B) 1 C) ∞ D) The answer is not defined.

Problem 3. How many distinct rearrangements are there of the letters of my name, JONATHAN?

A) 1 B) 8 C) $2 \times 7!$ D) 8! E) None of these

Problem 4. Let n be a positive integer. Compute

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}$$
$$+ \binom{n}{n^{(2)}} \qquad \text{B)} - \binom{n}{n^{(2)}} \qquad \text{C) } 0 \qquad \text{D) Depends on } n.$$

A) $\binom{n}{n/2}$ B) $-\binom{n}{n/2}$ C) 0

Problem 5. Let S be a finite set. Which is greater?

- A) The number of partitions of S.
- B) The number of equivalence relations on S.
- C) They are equal.
- D) The answer depends on S.

Problem 6. Let S be a set with n elements. How many ways are there to partition S into two subsets.

D) 2^{n} A) 1 B) nC) $2^n - 2$ E) None of these

Problem 7. Let S be a set with n elements and let a, b, and c be three positive integers with a + b + c = n. You may assume that a, b, and c are all different numbers. Devise a formula using addition, subtraction, multiplication, division, exponentiation, and the factorial for the number of partitions of S into three subsets of sizes a, b, and c.

Problem 8. How does your formula from the last problem change when a = $b \neq c$? What about when a = b = c?