Math 2001-002 Spring 2014 Homework 24

Last revised: March 19, 2014 at 1:46pm

Problem 1. Let P(n) be a sentence that depends on an integer n. Let m be a positive integer. Suppose the following two statements are true:

- (I) If, for some integer k, the sentences $P(k), P(k+1), \ldots, P(k+m)$ are all true then P(k-1) and P(k+m+1) are both true.
- (II) There is some integer k such that $P(k), P(k+1), \ldots, P(k+m)$ are all true.

Deduce using induction or proof by smallest counterexample that P(m) is true for all m.

Solution. Let k be an integer such that $P(k), P(k+1), \ldots, P(k+m)$ all hold. We prove by induction that P(n) holds for all $n \ge k$. Let $Q(\ell)$ be the sentence " $P(k + \ell), P(k + \ell + 1), \ldots, P(k + \ell + m)$ all hold". By assumption, Q(0)is true. Now we prove that $Q(\ell)$ is true provided that $Q(\ell - 1)$. Indeed, if $P(k + \ell - 1), \ldots, P(k + \ell - 1 + m)$ all hold then $P(k + \ell + m)$ is also true by Property (I). Therefore $P(k + \ell), P(k + \ell + 1), \ldots, P(k + \ell + m)$ are all true, so $Q(k + \ell)$ is true. This proves the inductive step, and therefore shows that P(n)holds for all $n \ge k$.

Now let $R(\ell)$ be the sentence " $P(k-\ell)$, $P(k-\ell+1)$, ..., $P(k-\ell+m)$ are all true". Then R(0) is true by assumption. We prove that $R(\ell-1)$ implies $R(\ell)$. Indeed, $R(\ell-1)$ tells us that $P(k-\ell+1)$, $P(k-\ell+2)$, ..., $P(k-\ell+m+1)$ are all true. Therefore, by Property (I), we deduce that $P(k-\ell)$ is true and therefore that all of $P(k-\ell)$, $P(k-\ell+1)$, ..., $P(k-\ell+m)$ are true. Thus $R(k-\ell)$ is true and by induction, we conclude that $R(\ell)$ is true for all $\ell \geq 0$. Thus P(n) is true for all $n \geq k$.

We've now shown that P(n) holds for $n \ge k$ and $n \le k$ so we may conclude it holds for all k.

Problem 2. Assume that n and k are non-negative integers. Find a formula for

$$\sum_{m=0}^{n} \binom{m}{k}$$

in terms of n and k and prove it by induction. (Hint: I suggest doing induction on n.)

Solution. We will prove that

$$\sum_{m=0}^{n} \binom{m}{k} = \binom{n+1}{k+1}$$

for $n \ge k$ by induction on n. When n = 0, we have $\sum_{m=0}^{n} \binom{m}{k} = \binom{0}{k}$, which is zero for k > 0 and is 1 for k = 0. On the other hand, $\binom{n+1}{k+1} = \binom{1}{k+1}$ is zero for k > 0 and is 1 for k = 0. This provides the base case for induction. Now we consider the inductive step. Assuming the formula for n, we prove it for n + 1. Adding $\binom{n+1}{k}$ to both sides of the equation, we get

$$\binom{n+1}{k} + \sum_{m=0}^{n} \binom{m}{k} = \binom{n+1}{k} + \binom{n+1}{k+1}.$$

The left side is the same as $\sum_{m=0}^{n+1} {m \choose k}$ and the right side is the same as ${\binom{n+2}{k+2}}$, by Pascal's identity. This proves the inductive step and completes the proof of the formula for all n.