Math 2001-002 Spring 2014 Homework 24

Last revised: March 10, 2014 at 10:01am

Problem 1. Prove that no non-empty set is disjoint from itself.

Solution. Suppose for the sake of contradiction that S is a non-empty set that is disjoint from itself. As S is non-empty, we may select some $x \in S$. Then $x \in S \cap S$, so that $S \cap S \neq \emptyset$. Therefore S is not disjoint from itself contrary to our assumption.

Problem 2. How many ways are there to rearrange the list (1, 2, 3, 4, 5) such that each of 1, 3, and 5 does not wind up in the same place? Justify your answer.

Solution. The answer is 64. Let S be the set of rearrangements of the list (1, 2, 3, 4, 5). This contains 5! = 120 elements. Let A_i be the subset of rearrangements that hold *i* in place. Then we want to count $|S - A_1 - A_3 - A_5|$. We can try to compute this number as

$$|S| - |A_1| - |A_3| - |A_5|$$

but then we will have subtracted everything in $A_1 \cap A_3$, $A_1 \cap A_5$ and $A_3 \cap A_5$ twice. We can try adding those back in:

$$|S| - |A_1| - |A_3| - |A_5| + |A_1 \cap A_3| + |A_1 \cap A_5| + |A_1 \cap A_3|$$

Now if $x \in A_1 \cap A_3$ and $x \notin A_5$ it will be counted

$$1 - 1 - 1 + 1 = 0$$

times, but if $x \in A_1 \cap A_3 \cap A_5$, it will be counted

$$1 - 1 - 1 - 1 + 1 + 1 + 1 = 1$$

times. To correct for this, we subtract off $|A_1 \cap A_3 \cap A_5|$ and get

$$|S| - |A_1| - |A_3| - |A_5| + |A_1 \cap A_3| + |A_1 \cap A_5| + |A_3 \cap A_5| - |A_1 \cap A_3 \cap A_5|.$$

To conclude, we should compute these values. The size of A_i is 4!; the size of $A_i \cap A_j$ is 3! if $i \neq j$. And the size of $A_1 \cap A_3 \cap A_5$ is 2! = 2. Therefore the number of rearrangements that move 1 and 3 and 5 is

$$5! - 3 \times 4! - 3 \times 3! + 2! = 64.$$

Problem 3. Prove that if k and n are integers such that 0 < k < n then k is not divisible by n.

Solution. Suppose, for the sake of contradiction, that k were divisible by n. Then we would have k = mn for some integer m. As both k and n are positive, m must be positive as well. In particular, m = 1 + q for some integer q with $q \ge 0$. Therefore $mn = (1 + q)n = n + qn \ge n + 0 = n$. On the other hand mn = k < n. This is absurd, so the premise could not have been possible. \Box

Problem 4. A number is called *rational* if it can be expressed as u/v where u and v are integers (and $v \neq 0$). Prove by contradiction that $\sqrt{2}$ is not rational. You may use the following fact about the number 2 that was proved in class: If x is an integer and $2|x^2$ then 2|x. (Hint: Choose u to be the smallest positive integer such that there is a positive integer v with $u/v = \sqrt{2}$ and find a contradiction.)

Solution. Choose u and v as in the hint. If $\sqrt{2} = u/v$ then $u^2 = 2v^2$. Then $2|u^2$ so 2|u. But this means u = 2w for some positive integer w so that $2w^2 = v^2$. Then $2|v^2$ so 2|v so v = 2x for some positive integer x. Therefore $w^2 = 2v^2$ so $w/v = \sqrt{2}$. But w < u so this contradicts the assumption that u was the smallest positive integer such that $\sqrt{2} = u/v$ for some positive integer v. \Box