Problem 1. Suppose that S is a set with n elements and a and b are positive integers such that $a+b=n$. Prove that the number of partitions of S into two parts of sizes a and b is

$$
\begin{array}{cl}
\binom{n}{a} & \text { if } a \neq b, \text { and } \\
\frac{1}{2}\binom{n}{a} & \text { if } a=b
\end{array}
$$

Problem 2. Suppose that S is a set with n elements and a, b, and c are positive integers with $a+b+c=n$. Find a formula for the numbers of partitions of S into three parts of sizes a, b, and c. Give some justification for your formula; it does not have to be a fully rigorous proof.

