
Math 2001-002 Spring 2014

Midterm Exam 2

Thursday, March 20, 2014

Instructions: Work alone, with no materials except pen, pencil, paper, and brain. Write your
answers on the additional sheets provided. Make sure that every solution is numbered and that
your full name appears on every page you turn in. Submit your answers with this cover sheet. You
may keep the problem sheet.

Justification is required for all answers. Unless otherwise specified, solutions must be written
in complete sentences. Answers will be graded on clarity in addition to correctness, so write neatly
and express yourself clearly.
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Problem 1. (3 points) Which of the following is not logically equivalent to the others?

A) X =⇒ Y

B) ¬X ∨ Y

C) ¬Y =⇒ ¬X
D) Y =⇒ X

Solution. We can verify that X =⇒ Y is equivalent to ¬X ∨ Y with a truth table:

X Y ¬X ¬X ∨ Y X =⇒ Y
T T F T T
T F F F F
F T T T T
F F T T T

This also implies that ¬Y =⇒ ¬X is equivalent to ¬¬Y ∨¬X, which is equivalent to Y ∨¬X,
which is equivalent to ¬X ∨ Y .

On the other hand, if X = T and Y = F then X =⇒ Y is false while Y =⇒ X is true.
Therefore Y =⇒ X is not equivalent to any of the others.

Problem 2. (5 points) Prove or disprove: If S is a set with n elements and R is an equivalence
relation on S with m equivalence classes then n is divisible by m.

Solution. Let S = {1, 2, 3} and let R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}. Then the equivalece
classes of R are {1, 2} and {3}. The number of equivalence classes is 2, which does not divide
|S| = 3.

Problem 3. (9 points) Let Q and R be relations. Define:

Q ◦R = {(x, z) : ∃y, (y, z) ∈ Q and (x, y) ∈ R}

For parts (i), (ii), and (iii), assume that Q and R are defined as follows:

Q = {(2, 3), (3, 2), (5, 3), (6, 7)}
R = {(1, 3), (1, 5), (1, 6), (2, 2), (2, 6), (3, 6)}

For part (iv), the relation R is arbitrary.

(i) (1 point) Draw pictures illustrating Q and R as arrows. Complete sentences are not required.

(ii) (1 point) Compute Q ◦R. Complete sentences are not required.

Solution.
Q ◦R = {(1, 2), (1, 3), (1, 7), (2, 3), (2, 7), (3, 7)}

(iii) (1 point) Draw a picture llustrating Q ◦R as arrows. Complete sentences are not required.

(iv) (6 points) Prove that a relation R is transitive if and only if R ◦R ⊂ R.

Solution. Suppose first that R is transitive. We must show that, for any (x, z) ∈ R ◦ R we
also have (x, z) ∈ R. By definition, if (x, z) ∈ R then there is some y such that (x, y) ∈ R
and (y, z) ∈ R. But because R is transitive, this implies that (x, z) ∈ R, as desired.

Now suppose that R ◦ R ⊂ R. To show that R is transitive, we must verify that, whenever
(x, y) ∈ R and (y, z) ∈ R we also have (x, z) ∈ R. To see this, observe that if (x, y) ∈ R and
(y, z) ∈ R then (x, z) ∈ R ◦R. As R ◦R ⊂ R, this implies that (x, z) ∈ R, as desired.



Problem 4. (7 points) On this problem, your answers may use integers, the symbol n, and the
operations of addition, subtraction, multiplication, and division. In particular, you may not use
binomial coefficients, factorials, or ellipses.

(i) (3 points) Find the coefficient of x3yn−3 in (x + y)n. Complete sentences are not required.

Solution. (
n

3

)
=

n!

3!(n− 3)!
=

n(n− 1)(n− 2)

6

(ii) (4 points) Find the coefficient of x3y4zn−7 in (x + y + z)n.

Solution. Let w = y + z. The coefficient of x3wn−3 in (x + w)n is
(
n
3

)
, as above. That is, we

could write

(x + y + z)n = · · ·+
(
n

3

)
x3(y + z)n−3 + · · ·

The coefficient of y4zn−7 in (y + z)n−3 is
(
n−3
4

)
, so we get

(x + y + z)n = · · ·+
(
n

3

)
x3
(
· · ·+

(
n− 3

4

)
y4zn−7 + · · ·

)
+ · · ·

After distributing, we get

(x + y + z)n = · · ·+
(
n

3

)(
n− 3

4

)
x3y4zn−7 + · · ·

Therefore the coefficient is(
n

3

)(
n− 3

4

)
=

n!(n− 3)!

3! (n− 3)! 4! (n− 7)!
=

n!

6(24)(n− 7)!
=

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

144
.

Solution. Here is a second solution, by grouping x and y together:

(x + y + z)n = ((x + y) + z)n

= · · ·+
(
n

7

)
(x + y)7zn−7 + · · ·

= · · ·+
(
n

7

)
(· · ·+

(
7

3

)
x3y4 + · · · )zn−7 + · · ·

= · · ·+
(
n

7

)(
7

3

)
x3y4zn−7 + · · ·

Therefore the coefficient is(
n

7

)(
7

3

)
=

n!7!

7!(n− 7)!3!4!

=
n!

(n− 7)!3!4!

=
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

144



Problem 5. (6 points) Prove that, for any real numbers a, b, and c,

ab = ac if and only if a = 0 or b = c.

Solution. Suppose for the sake of contradiction that a 6= 0 and b 6= c. Then we may divide by a in
the equation ab = ac to obtain b = c. This contradicts the assumption that b 6= c, so the original
assumption must have been false. That is, we must have a = 0 or b = c.

Solution. The assertion is equivalent to the assertion that

If ab = ac and a 6= 0 then b = c.

Assume that ab = ac and a 6= 0. Then we may divide by a since a 6= 0 to obtain b = c.

Problem 6. (4 points) Consider an infinite parade of elephants, where there is one elephant for
each integer. Assume that the n-th elephant is pink if and only if the (n + 2)-th elephant is pink.
Describe the minimal amount of additional information you would need to conclude that every
elephant in the parade is pink. Your answer to this problem should be justified, but it does not
have to be a fully rigorous proof.

Solution. At least one of the odd-numbered elephants is pink and at least one of the even-numbered
elephants is pink.

Suppose that the k-th elephant is pink. Then by induction, the (k + 2m)-th elephant will be
pink, for every m ≥ 0. Likewise, the (k− 2m)-th elephant will be pink for every m ≥ 0. Thus, if an
even-numbered elephant is pink then all of the even-numbered elephants are pink. Likewise, if an
odd-numbered elephant is pink then all of the odd-numbered elephants are pink. Since every integer
number is either even or odd, if at least one even-numbered is pink and at least one odd-numbered
elephant is pink then all elephants in the parade are pink.

Problem 7. (6 points) Call a collection of sets A1, . . . , An triple-wise disjoint if

Ai ∩Aj ∩Ak = ∅

whenever i, j, and k are pairwise distinct1 indices between 1 and n. Prove that if A1, . . . , An are
triple-wise disjoint then the following formula holds:

|A1 ∪ · · · ∪An| =
n∑

i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |

You may not use the inclusion-exclusion formula on this problem.

Solution. For each x ∈ A1 ∪ · · · ∪An, we evaluate how many times it is counted on the left side of
the equation and how many times it is counted on the right side of the equation. We will see that
these numbers are the same, so the two sides must be equal.

If x ∈ A1 ∪ · · · ∪An then x could be contained in exactly one of the Ai or it could be contained
in two of them. The condition Ai ∩Aj ∩Ak = ∅ (for pairwise distinct i,j, k) implies that it cannot
be contained in more than two of the Ai-s.

If x is contained in exactly one of the Ai-s then x contributes 1 to the sum
∑n

i=1 |Ai| and 0 to
the sum

∑
1≤i<j≤n |Ai ∩Aj |. If x is contained in two of the Ai-s, then x contributes 2 to

∑n
i=1 |Ai|

but it also contributes 1 to the sum
∑

1≤i<j≤n |Ai ∩ Aj |. Either way, x contributes a total of 1 to
the difference

n∑
i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |.

Since x also contributes exactly 1 to |A1 ∪ · · · ∪An|, we may conclude that

|A1 ∪ · · · ∪An| =
n∑

i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |.

1For i, j, and k to be pairwise distinct means that i 6= j and i 6= k and j 6= k.



Solution. Here is a solution by induction. If n = 0 then both sides of the equation are 0. If n = 1
then the left side is |A1| and the right side is |A1|. If n = 2 then the left side is |A1 ∪ A2| and the
right side is |A1|+ |A2| − |A1 ∩A2|. This formula was proved in the textbook and in class.

Now we assume for the sake of induction that

|A1 ∪ · · · ∪An| =
n∑

i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |

and demonstrate that

|A1 ∪ · · · ∪An+1| =
n+1∑
i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |. (∗)

Let B = A1 ∪ · · · ∪An. Then the left side of this equation can be written |B ∪An+1|, and we know
that

|B ∪An+1| = |B|+ |An+1| − |B ∩An+1|

=

n∑
i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |+ |An+1| − |B ∩An+1|

=

n+1∑
i=1

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj | − |B ∩An+1|

To prove Equation (∗) we need to show that

|B ∩An+1| =
n∑

i=1

|Ai ∩An+1|.

We will prove this by induction on n. It will be easier to state this as a lemma with the sets in a
different order:

Lemma. If B1, . . . , Bn are sets that are triple-wise disjoint then

|B1 ∩ (B2 ∪ · · · ∪Bn)| =
n∑

i=2

|B1 ∩Bi|.

We prove this by induction on n. If n = 0 then both sides are 0; if n = 1 then both sides are
|A1 ∩A2|. Assuming for the sake of induction that

|B1 ∩ (B2 ∪ · · · ∪Bn)| =
n∑

i=2

|B1 ∩Bi|

we prove that

|B1 ∩ (B2 ∪ · · · ∪Bn+1)| =
n+1∑
i=2

|B1 ∩Bi|.

Let C = B2 ∪ · · · ∪Bn. Then we have

|B1 ∩ (C ∪Bn+1)| = |(B1 ∩ C) ∪ (B1 ∩Bn+1)|
= |B1 ∩ C|+ |B1 ∩Bn+1| − |B1 ∩ C ∩Bn+1|

=
n∑

i=2

|B1 ∩Bi|+ |B1 ∩Bn+1| − |B1 ∩ C ∩Bn+1|

=

n+1∑
i=2

|B1 ∩Bn+1| − |B1 ∩ C ∩Bn+1|



But any element of B1 ∩C ∩Bn+1 is contained in B1 ∩C ∩Bn+1 for some 1 < i < n+ 1. Sicne the
Bi are triple-wise disjoint, this means that B1 ∩ C ∩Bn+1 = ∅, so we conclude

|B1 ∩ (B1 ∪ · · · ∪Bn+1)| = |B1 ∩ (C ∪Bn+1)|

=

n+1∑
i=2

|B1 ∩Bn+1|.

This completes the proof of the lemma. It also completes the solution to the problem.


