Quiz 9

Math 2001–002, Fall 2016

November 9

Question 1. Make a list of the sentences in the proof below that are claims. For each claim you list, indicate the line on which the demonstration of the claim is completed.

Theorem (Well-ordering principle). If S is any nonempty set of integers ≥ 0 then S contains a smallest element.

Theorem. If n and d are any integers such that d > 0 then there are unique integers q and r such that n = qd + r and $0 \le r < d$.

Proof. Suppose that n and d are integers such that d > 0. We have to prove two things:

- (i) There are integers q and r such that n = qd + r and $0 \le r < d$.
- (ii) If there are integers q, r, q', and r' such that n = qd + r and n = q'd + r' and $0 \le r < d$ and $0 \le r' < d$ then q = q' and r = r'.

We will prove that q and r exist first.

There is a set:

1

2

 $\mathbf{3}$

4

5

$$S = \{n - qd : q \in \mathbb{Z} \land n - qd \ge 0\}$$

We will apply the well-ordering principle to S, so we need to verify verify that S is a set of integers ≥ 0 and $S \neq \emptyset$.

6 By definition, S is a set of integers ≥ 0 .

7 We need to check that $S \neq \emptyset$.

8 If $n \ge 0$ then $n \in S$, because n = n - 0d, so S is not empty.

9	If $n < 0$ then $n - (2n)d = -nd > 0$, so $n - (2n)d$ is in S.
10	Either way, S contains at least one element, so S is not empty.
11	Now we may apply the well-ordering principle to S .
12	Therefore S contains a smallest element, which we will call r .
13	By the definition of S, we know that there is an integer q such that $n - qd = r$.
14	Therefore $n = qd + r$.
15	We still need to check that $0 \le r < d$.
16	We know that $r \ge 0$ because $r \in S$.
17	On the other hand, r cannot be $\geq d$.
18	This is because $r - d = n - (q + 1)d$ and if $r \ge d$ then $r - d \ge 0$, which means $r - d \in S$.
19	Since $r - d < r$, this could only happen if r were not the smallest element of S.
20	To complete the proof, we need to show that the q and r we constructed above are
	unique.
21	Suppose that $n = qd + r$ and $n = q'd + r'$ where q, r, q' , and r' are all integers and $0 \le r < d$
	and $0 \leq r' < d$.
22	Then $qd + r = q'd + r'$.
23	Rearranging this gives
	$(q-q')d = r' - r. \tag{(*)}$
24	Since $0 \le r < d$ and $0 \le r' < d$, we know that $-d < r' - r < d$.
25	Therefore $-d < (q - q')d < d$.
26	Since $d > 0$, we can divide by d to get $-1 < q - q' < 1$.
27	But $q - q'$ is an integer, and the only integer between -1 and 1 is 0.
28	Therefore $q - q' = 0$.
29	Substituting back into (*), we get $r' - r = 0$.
30	Therfore $r = r'$, as required.
31	This completes the proof.

Q.E.D.