Exploration 23

Math 2001–002, Fall 2016

November 28, 2016

Axiom 1. All integers are either ≥ 0 or < 0 and no integer is both ≥ 0 and < 0.

Theorem 2. All natural numbers are either even or odd, and no natural number is both even and odd.

Definition 3. Two sets A and B have the same cardinality if there is a bijection from A to B.

Theorem 4. If $f: A \to B$ is a function then f is a bijection if and only if f has a two-sided inverse.

Definition 5. If $f: A \to B$ is a function, a *left inverse* of f is a function $g: B \to A$ such that g(f(a)) = a for all $a \in A$. A *right inverse* of f is a function $g: B \to A$ such that f(g(b)) = b for all $b \in B$. A *two-sided inverse* of f is a function $g: B \to A$ that is both a left inverse of f and a right inverse of f.

Question 6. Construct a rigorous proof of the following theorem:

Theorem. The sets \mathbb{N} and \mathbb{Z} have the same cardinality.

You may want to define functions $f : \mathbb{N} \to \mathbb{Z}$ and $g : \mathbb{Z} \to \mathbb{N}$ by the following formulas:

$$f(n) = -\frac{n}{2} \quad n \in \mathbb{N} \text{ and } n \text{ is even}, \qquad \qquad g(z) = -2z \quad \text{if } z \in \mathbb{Z} \text{ and } z < 0,$$

$$f(n) = \frac{n-1}{2} \quad n \in \mathbb{N} \text{ and } n \text{ is odd}, \qquad \qquad g(z) = 2z+1 \quad \text{if } z \in \mathbb{Z} \text{ and } z \ge 0.$$

If you use these functions, make sure to verify that they are well-defined!