Exploration 19

Math 2001–002, Fall 2016

November 4, 2016

Theorem. If S is a nonempty subset of \mathbb{N} then S contains a smallest element.

Question 1. Is it true that every subset of \mathbb{Z} has a smallest element? What about every subset of \mathbb{R} ?

1	$\mathit{Proof}\ of\ the\ theorem.$ We will prove the following equivalent statement: If S is a subset of
	\mathbb{N} with no smallest element then $S = \emptyset$.
2	Suppose that S is a subset of \mathbb{N} with no smallest element.
3	We wish to show that that every $n \in \mathbb{N}$ is not an element of S.
4	We will use strong induction on n to prove this.
5	Assume that $n \in \mathbb{N}$ and that, for all natural numbers m in the range $1 \leq m < n$, we
	already know $m \notin S$.
6	We will prove that $n \notin S$.
7	Indeed, if n were in S then n would be the smallest element of S .
8	We know that S has no smallest element, so this means n can't possibly be in S .
9	That is what we wanted to prove, so this completes the inductive step.
10	The induction completes the proof. Q.E.D.