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Theorem 1. Every positive integer is both even and odd.

Proof. All positive integers are generated by repeatedly adding 1, so what we
need to show is

Claim. If x is a positive integer that is both even and odd then
x + 1 is both even and odd.

To prove this claim, suppose that x is a positive intger that is both even and
odd. Since x is even and 1 is odd, x + 1 is the sum of an even number and an
odd number, so x + 1 is odd. Since x is odd and 1 is odd, x + 1 is the sum of
an odd number and another odd number, so x + 1 is even. Therefore x + 1 is
both even and odd, as required.

Theorem 2. All real numbers are equal.

Proof. What we will show is the following claim:

Claim. For all lists x1, . . . , xn of n real numbers, x1 = x2 = · · · =
xn.

We will prove this by induction on the length of the list, n, which is a positive
integer. As in any induction proof, we have two things to show:

S1 For any list of 1 real number, all numbers in the list are equal.

S2 If for all lists of n real numbers x1, . . . , xn we know that x1 = x2 =
· · · = xn then for all lists of n + 1 real numbers, y1, y2, . . . , yn+1 we have
y1 = y2 = · · · = yn+1.

We know that S1 is true because any real number equals itself. Let’s prove S2.
Assume that for all lists of n real numbers x1, . . . , xn we have x1 = x2 = · · ·xn.
Suppose that y1, . . . , yn+1 is a list of n+1 real numbers. Then y1, . . . , yn is a list
of n real numbers, so by the inductive hypothesis, y1 = y2 = · · · = yn. On the
other hand, y2, . . . , yn+1 is also a list of n real numbers, so y2 = y3 = · · · = yn+1.
Putting these two facts together gives us

y1 = y2 = · · · = yn = yn+1.

Therefore all of the real numbers in the list y1, . . . , yn+1 are the same, as re-
quired. This proves S2 and therefore proves the claim.



For the next theorem, we make use of a recursively defined sequence:

A0 = 2

A1 = 3

An = 5Bn−1 − 6Bn−2

Theorem 3. For all integers n ≥ 0 we have An = 2n + 3n.

Proof. We prove this by induction on n. We have two things to prove:

T1 A0 = 20 + 30.

T2 If An = 2n + 3n then An+1 = 2n+1 + 3n+1.

The proof of T1 is not difficult: A0 was defined to be 2 and 20 +30 = 1+1 = 2.
Therefore A0 = 20 + 30, as required.

Let’s prove T2. Suppose that An = 2n + 3n. We know by the definition of
An+1 that

An+1 = 5An − 6An−1.

We substitute in An = 2n + 3n and An−1 = 2n−1 + 3n−1 and get

An+1 = 5(2n + 3n) − 6(2n−1 + 3n−1)

= (2 + 3)(2n + 3n) − (2 × 3)(2n−1 + 3n−1)

= 2n+1 + 2 × 3n + 3 × 2n + 3n+1 − 3 × 2n − 2 × 3n

= 2n+1 + 3n+1,

which is exactly what we needed to show. This completes the proof of T2 and
also the proof of the theorem.

For the next theorem, we make use of a recursively defined sequence:

B0 = 2

B1 = 5

Bn = 5Bn−1 − 6Bn−2

Theorem 4. For all integers n ≥ 0 we have Bn = 2n + 3n.


