Exploration 14

Math 2001–002, Fall 2016

October 17, 2016

Theorem 1. Every positive integer is both even and odd.

Proof. All positive integers are generated by repeatedly adding 1, so what we need to show is

Claim. If x is a positive integer that is both even and odd then x + 1 is both even and odd.

To prove this claim, suppose that x is a positive intger that is both even and odd. Since x is even and 1 is odd, x + 1 is the sum of an even number and an odd number, so x + 1 is odd. Since x is odd and 1 is odd, x + 1 is the sum of an odd number and another odd number, so x + 1 is even. Therefore x + 1 is both even and odd, as required.

Theorem 2. All real numbers are equal.

Proof. What we will show is the following claim:

Claim. For all lists x_1, \ldots, x_n of n real numbers, $x_1 = x_2 = \cdots = x_n$.

We will prove this by induction on the length of the list, n, which is a positive integer. As in any induction proof, we have two things to show:

S1 For any list of 1 real number, all numbers in the list are equal.

S2 If for all lists of *n* real numbers x_1, \ldots, x_n we know that $x_1 = x_2 = \cdots = x_n$ then for all lists of n + 1 real numbers, $y_1, y_2, \ldots, y_{n+1}$ we have $y_1 = y_2 = \cdots = y_{n+1}$.

We know that **S1** is true because any real number equals itself. Let's prove **S2**. Assume that for all lists of n real numbers x_1, \ldots, x_n we have $x_1 = x_2 = \cdots x_n$. Suppose that y_1, \ldots, y_{n+1} is a list of n+1 real numbers. Then y_1, \ldots, y_n is a list of n real numbers, so by the inductive hypothesis, $y_1 = y_2 = \cdots = y_n$. On the other hand, y_2, \ldots, y_{n+1} is also a list of n real numbers, so $y_2 = y_3 = \cdots = y_{n+1}$. Putting these two facts together gives us

$$y_1 = y_2 = \dots = y_n = y_{n+1}.$$

Therefore all of the real numbers in the list y_1, \ldots, y_{n+1} are the same, as required. This proves **S2** and therefore proves the claim.

For the next theorem, we make use of a recursively defined sequence:

$$A_0 = 2$$
$$A_1 = 3$$
$$A_n = 5B_{n-1} - 6B_{n-2}$$

Theorem 3. For all integers $n \ge 0$ we have $A_n = 2^n + 3^n$.

Proof. We prove this by induction on n. We have two things to prove:

T1 $A_0 = 2^0 + 3^0$.

T2 If $A_n = 2^n + 3^n$ then $A_{n+1} = 2^{n+1} + 3^{n+1}$.

The proof of **T1** is not difficult: A_0 was defined to be 2 and $2^0 + 3^0 = 1 + 1 = 2$. Therefore $A_0 = 2^0 + 3^0$, as required.

Let's prove **T2**. Suppose that $A_n = 2^n + 3^n$. We know by the definition of A_{n+1} that

$$A_{n+1} = 5A_n - 6A_{n-1}.$$

We substitute in $A_n = 2^n + 3^n$ and $A_{n-1} = 2^{n-1} + 3^{n-1}$ and get

$$A_{n+1} = 5(2^n + 3^n) - 6(2^{n-1} + 3^{n-1})$$

= (2+3)(2ⁿ + 3ⁿ) - (2 × 3)(2ⁿ⁻¹ + 3ⁿ⁻¹)
= 2ⁿ⁺¹ + 2 × 3ⁿ + 3 × 2ⁿ + 3ⁿ⁺¹ - 3 × 2ⁿ - 2 × 3ⁿ
= 2ⁿ⁺¹ + 3ⁿ⁺¹.

which is exactly what we needed to show. This completes the proof of $\mathbf{T2}$ and also the proof of the theorem.

For the next theorem, we make use of a recursively defined sequence:

$$B_0 = 2$$

$$B_1 = 5$$

$$B_n = 5B_{n-1} - 6B_{n-2}$$

Theorem 4. For all integers $n \ge 0$ we have $B_n = 2^n + 3^n$.