Exploration 13

Math 2001–002, Fall 2016

October 14, 2016

Theorem 1. Let $A_0 = 2$ and $A_1 = 5$ and define A_n for all integers $n \ge 2$ by the recursive formula,

$$A_n = 5A_{n-1} - 6A_{n-2}.$$

Then $A_n = 2^n + 3^n$ for all integers $n \ge 0$.

Question 2. Set up a proof by induction of the theorem, using the following rules to generate all integers ≥ 0 :

N1 0 is an integer ≥ 0 .

N2 If x is an integer ≥ 0 then x + 1 is an integer ≥ 0 .

Question 3. Will you be able to complete this proof? What problems might you encounter when trying to complete it?

Question 4. Set up a proof by *strong* induction of the theorem, using the same rules to generate all integers ≥ 0 .

Question 5. Do you encounter the same problems when trying to complete the proof? Do you encounter new ones?

Question 6. Complete the proof using strong induction.

Theorem 7. Every integer ≥ 18 can be written as 4a + 7b for some integers a and b that are ≥ 0 .

Question 8. Answer the same questions about Theorem 7.