Problem 1. Prove that for every finite n with $n \ge 2$,

$$\binom{n}{k} = \binom{n-2}{k-2} + 2\binom{n-2}{k-1} + \binom{n-2}{k}.$$

Solution. Let S be a set with $n \ge 2$ elements. Choose two elements, x and y. Consider the function

$$f: \binom{S}{k} \to 2^{\{x,y\}}$$

defined by the formula $f(T) = T \cap \{x, y\}$. We have:

$$f^{-1}\{\varnothing\} = \binom{S - \{x, y\}}{k}$$

We have a bijection

$$u: f^{-1}\{\{x\}\} = \{T \in \binom{S}{k} : x \in T\} \to \binom{S - \{x, y\}}{k - 1}$$
$$u(T) = T \smallsetminus \{x\}.$$

We have a bijection

$$v: f^{-1}\{\{y\}\} = \{T \in \binom{S}{k} : y \in T\} \to \binom{S - \{x, y\}}{k - 1}$$
$$v(T) = T \smallsetminus \{y\}.$$

Finally, we have a bijection

$$w: f^{-1}\{\{x, y\}\} = \{T \in \binom{S}{k} : x \in T \land y \in T\} \to \binom{S - \{x, y\}}{k - 2}$$
$$w(T) = T \smallsetminus \{x, y\}.$$

Thus

$$\left|\binom{S}{k}\right| = \left|\binom{S \smallsetminus \{x, y\}}{k}\right| + \left|\binom{S \smallsetminus \{x\}}{k-1}\right| + \left|\binom{S \smallsetminus \{y\}}{k-1}\right| + \left|\binom{S \smallsetminus \{x, y\}}{k-2}\right|$$

which is the desired formula.

Problem 2. Let S be set of size n. Denote by $\binom{S}{ab}$ the set of all lists (A, B) where $\{A, B\}$ is a partition of S such that |A| = a and |B| = b. Which of the following are equal to $|\binom{S}{ab}|$?

- A) $\binom{n}{a}$
- B) $\binom{n}{b}$
- C) $\frac{1}{2} \binom{n}{a}$
- D) More than one of the above
- E) None of the above

Solution. D)

Problem 3. Let $f(x) = \sum_{k=0}^{n} {n \choose k} x^k$. Which of the following agrees with f(1) for all natural numbers n?

A) 1 B)
$$\binom{n+1}{k+1}$$
 C) $\binom{n}{n/2}$ D) 2^n E) 3^n

Solution. D)

Problem 4. Let $f(x) = \sum_{k=0}^{n} {n \choose k} x^{k}$. Which of the following agrees with f(2) for all natural numbers n? A) 1 B) ${n+1 \choose k+1}$ C) ${n \choose n/2}$ D) 2^{n} E) 3^{n}

Solution. E)

Problem 5. Prove that $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$ for all natural numbers n.

Solution. By induction on n. If n = 0 then $(x + y)^n = 1$ and

$$\sum_{k=0}^{0} \binom{0}{k} x^{k} = \binom{0}{0} x^{0} = 1$$

so the formula works when n = 0. Supposing the formula holds for n we prove it also holds for n + 1. We have

$$(1+x)^{n+1} = (1+x)(1+x)^n = (x+y)\sum_{k=0}^n \binom{n}{k} x^k$$
$$= \sum_{k=0}^n \binom{n}{k} x^k + \sum_{k=0}^n \binom{n}{k} x^{k+1}$$
$$= \sum_{k=0}^n \binom{n}{k} x^k + \sum_{k=1}^{n+1} \binom{n}{k-1} x^k$$
$$= \sum_{k=0}^{n+1} \binom{n}{k} x^k + \sum_{k=0}^{n+1} \binom{n}{k-1} x^k$$
$$= \sum_{k=0}^{n+1} \binom{n}{k} x^k + \binom{n}{k-1} x^k$$
$$= \sum_{k=0}^{n+1} \binom{n+1}{k} x^k.$$