Definition 1. Let A and B be sets. A relation f from A to B...

is called	if
a function	$\forall a \in A, \exists ! b \in B, (a, b) \in f$
${\bf injective} \ {\rm or} \ {\bf one-to-one}$	$\forall a, a' \in A, \forall b \in B, ((a, b) \in f \land (a', b) \in f \implies a = a')$
<pre>surjective or onto</pre>	$\forall b \in B, \exists a \in A, (a, b) \in f$
bijective	f is injective and surjective
an injection	f is an injective function
a surjection	f is a surjective function
a bijection	f and f^{-1} are both functions

The *image* of f is

$$im f = \{b \in B : \exists a \in A, (a, b) \in f\}$$

If f is a function from A to B then and $a \in A$ then we write f(a) for the unique $b \in B$ such that $(a,b) \in f$. We write $f: A \to B$ to mean "f is a function from A to B." We call A the *domain* of f and B the *codomain* of f.

Problem 2. Let f be the function given by $f(x) = x^2$. Which of the following are true?

- A) f is injective.
- B) f is surjective.
- C) f is both injective and surjective.
- D) f is neither injective nor surjective.
- E) What are the domain and codomain?

Solution. E)

Problem 3. Let $f : \mathbf{R} \to \mathbf{R}$ be the function given by $f(x) = x^2$. Which of the following are true?

- A) f is injective.
- B) f is surjective.
- C) f is both injective and surjective.
- D) f is neither injective nor surjective.
- E) What are the domain and codomain?

Solution. D)

Problem 4. Let $f : \mathbf{R} \to \mathbf{R}_{\geq 0}$ be the function given by $f(x) = x^2$. Which of the following are true?

- A) f is injective.
- B) f is surjective.
- C) f is both injective and surjective.
- D) f is neither injective nor surjective.
- E) What are the domain and codomain?

Solution. B)

Problem 5. Let $f : \mathbf{R}_{\geq 0} \to \mathbf{R}_{\geq 0}$ be the function given by $f(x) = x^2$. Which of the following are true?

- A) f is injective.
- B) f is surjective.

- C) f is both injective and surjective.
- D) f is neither injective nor surjective.
- E) What are the domain and codomain?

Solution. C)

Problem 6. Let S be a set and let $f: 2^S \to 2^S$ be the function

$$f(T) = S - T.$$

Which of the following are true?

- A) f is injective.
- B) f is surjective.
- C) f is both injective and surjective.
- D) f is neither injective nor surjective.

Solution. C)

Theorem 7. Suppose f is a function from A to B. The following properties are equivalent:

- (i) f is both injective and surjective from A to B;
- (ii) f^{-1} is a function from B to A.

Proof. Suppose that f is both injective and surjective from A to B. We prove that f^{-1} is a function from B to A. To show this, we need to show that, for every $b \in B$ there is a unique $a \in A$ such that $(b, a) \in f^{-1}$. Suppose that $b \in B$. By the surjectivity of f, there is at least one $a \in A$ such that $(a, b) \in f$. By definition of f^{-1} , this means $(b, a) \in f^{-1}$. To see that a is unique, suppose that $(b, a') \in f^{-1}$. Then $(a', b) \in f$. But f is injective, and both (a, b) and $(a', b) \in f$. Therefore a = a'. This shows that a is unique.

Let us now suppose that f^{-1} is a function from B to A. To see that f is surjective, we need to show that, for every $b \in B$, there is at least one $a \in A$ such that $(a, b) \in f$. Let $a = f^{-1}(b)$. Then by definition, we have $(b, a) \in f^{-1}$. By definition of f^{-1} , this means that $(a, b) \in f$. Thus f(a) = b, by definition. This proves f is surjective.

To show that f is injective, we must show that if f(a) = f(a') then a = a'. Suppose that $a \in A$ and that f(a) = f(a'). Let's write b = f(a) = f(a') for brevity. Then $(a,b) \in f$ and $(a',b) \in f$. By definition of f^{-1} , this means that $(b,a) \in f^{-1}$ and $(b,a') \in f^{-1}$. That is, $a = f^{-1}(b)$ and $a' = f^{-1}(b)$. Therefore a = a'. This proves f is injective.

Definition 8. Suppose A and B are sets. We write $|A| \leq |B|$ and say that the *cardinality* of A is less than or equal to the cardinality of B if there is an injection from A to B. We write that |A| = |B| and say that A and B have the same cardinality of there is a bijection from A to B.