Definition 1.	Let A and B	be sets. A	. relation f	from A	to B
---------------	-----------------	------------	----------------	----------	--------

is called	if	
a function	$\forall a \in A, \exists ! b \in B, (a, b) \in f$	
${\bf injective} \ {\rm or} \ {\bf one-to-one}$	$\forall a, a' \in A, \forall b \in B, \left((a, b) \in f \land (a', b) \in f \implies a = a' \right)$	
<pre>surjective or onto</pre>	$\forall b \in B, \exists a \in A, (a, b) \in f$	
bijective	f is injective and surjective	
an injection	f is an injective function	
a surjection	f is a surjective function	
a bijection	f and f^{-1} are both functions	

If f is a function from A to B then and $a \in A$ then we write f(a) for the unique $b \in B$ such that $(a,b) \in f$. We write $f: A \to B$ to mean "f is a function from A to B." We call A the *domain* of f and B the *codomain* of f.

Problem 2. Let $A = \{1, 2, 3\}$ and let $B = \{4, 5\}$. Let $f = \{(1, 4), (2, 4)\}$. Which element should you add to f to make f a function from A to B?

- A) (1,5)
- B) (3, 4)
- C) (3, 6)
- D) (0,4)
- E) f is already a function from A to B.

Solution. B)

Problem 3. Let $f : \{\text{people}\} \to \{\text{people}\}$ be the function with f(P) = (P's father). Which of the following are true?

- A) f is injective.
- B) f is surjective.
- C) f is both injective and surjective.
- D) f is neither injective nor surjective.

Solution. D)

Problem 4. Let $f : \{\text{only children}\} \to \{\text{people}\}\$ be the function with f(P) = (P's father). Which of the following are true?

- A) f is injective.
- B) f is surjective.
- C) f is both injective and surjective.
- D) f is neither injective nor surjective.

Solution. A)